第十节 闭区间上连续函数的性质
小节前言
函数f(x)在闭区间[a,b]上连续需要满足三个条件:(1)在开区间(a,b)内连续。(2)在右端点b处左连续。(3)在左端点a处右连续。
本节目标
在闭区间上连续的函数有几个重要的性质,以定理的形式叙述它们。
一、有界性与最大值最小值定理
概述
定理1(有界性与最大值最小值定理)
二、零点定理与介值定理
零点的定义
如果 x0 使 f(x0)=0,那么x0称为函数f(x)的零点。
定理2(零点定理)
定理3(介值定理)
定理3(介值定理)的证明
定理3(介值定理)的推论
推论的证明
例1
*三、一致连续性
一致连续性的概念
定义
例2
定理4(一致连续性定理)
习题 1-10
1.


不动点的定义
不动点的定义: 对于函数 f(x),如果存在一个点 c,使得 f(c) = c,那么这个点 c 就称为函数 f(x) 的不动点 ,也就是说,当我们把 c 代入函数后,函数值等于 c 本身。