高等数学-第七版-上册-第一章函数与极限——第十节 闭区间上连续函数的性质

第十节 闭区间上连续函数的性质

小节前言


函数f(x)在闭区间[a,b]上连续需要满足三个条件:(1)在开区间(a,b)内连续。(2)在右端点b处左连续。(3)在左端点a处右连续。

本节目标

在闭区间上连续的函数有几个重要的性质,以定理的形式叙述它们。 

一、有界性与最大值最小值定理

概述

定理1(有界性与最大值最小值定理)

二、零点定理与介值定理

零点的定义

如果 x0 使 f(x0)=0,那么x0称为函数f(x)的零点。

定理2(零点定理)


定理3(介值定理)

定理3(介值定理)的证明

定理3(介值定理)的推论

推论的证明

例1

*三、一致连续性

一致连续性的概念

定义


例2


定理4(一致连续性定理)

习题 1-10

1.

不动点的定义

不动点的定义: 对于函数 f(x),如果存在一个点 c,使得 f(c) = c,那么这个点 c 就称为函数 f(x) 的不动点 ,也就是说,当我们把 c 代入函数后,函数值等于 c 本身

2.


3.

为什么 f(x) 在 [0,a+b] 上连续?

4.


多项式函数都是连续函数

既然f(x)为连续函数,那么根据介值定理,如果连续函数在一个区间两端取值异号,则在该区间内必存在零点。为什么还有研究观察x→±∞时多项式的性质?

5.

*6.

*7.

*8.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值