第十节 闭区间上连续函数的性质
小节前言

函数f(x)在闭区间[a,b]上连续需要满足三个条件:(1)在开区间(a,b)内连续。(2)在右端点b处左连续。(3)在左端点a处右连续。
本节目标
在闭区间上连续的函数有几个重要的性质,以定理的形式叙述它们。
一、有界性与最大值最小值定理
概述

定理1(有界性与最大值最小值定理)


二、零点定理与介值定理
零点的定义
如果 x0 使 f(x0)=0,那么x0称为函数f(x)的零点。
定理2(零点定理)


定理3(介值定理)

定理3(介值定理)的证明

定理3(介值定理)的推论

推论的证明

例1

*三、一致连续性
一致连续性的概念

定义


例2


定理4(一致连续性定理)

习题 1-10
1.


不动点的定义
不动点的定义: 对于函数 f(x),如果存在一个点 c,使得 f(c) = c,那么这个点 c 就称为函数 f(x) 的不动点 ,也就是说,当我们把 c 代入函数后,函数值等于 c 本身。





















被折叠的 条评论
为什么被折叠?



