多项式长除法

### 矩阵多项式除法计算方法 对于矩阵多项式除法,这一过程类似于标量多项式除法,但涉及到的是矩阵运算。假设存在两个矩阵多项式 \(A(s)\) 和 \(B(s)\),其中 \(A(s)\) 是被除数而 \(B(s)\) 是除数。 #### 定义与准备阶段 定义两个矩阵多项式如下: \[ A(s)=\sum_{i=0}^{n}{a_is^i}, B(s)=\sum_{j=0}^{m}{b_js^j}\] 这里 \(s\) 表示变量,\(a_i, b_j\) 分别代表对应的系数矩阵[^1]。 为了简化说明,假定 \(deg(A)> deg(B)\),即分子的最高次数大于分母的最大次幂;如果情况相反,则商为零向量,余项等于原多项式本身。 #### 计算步骤展示 通过不断减少被除式的阶数来逐步求解直到剩余部分小于除子的程度为止。具体操作可以描述为寻找合适的倍率使得每次相减后的结果尽可能低阶。 ```matlab function [Q,R]=mpolyldiv(A,B) % MPOLYL_DIV Matrix Polynomial Long Division. % % Q and R are the quotient and remainder of dividing matrix polynomials. if size(A,2)<size(B,2), error('The degree of dividend must be no less than that of divisor.'); end [n,m]=size(B); q=zeros(n,n); % Initialize Quotient as zero matrices with appropriate dimensions r=A; % Initially set Remainder equal to Dividend while ~isempty(r)&&~all(all(abs(triu(r,-(length(size(r))-1))))<eps*norm(B,'fro')) d=max(find(sum(diag(flipud(r))~=0))); % Find leading term index in current r c=r(d,:)/B(end,:); % Compute coefficient for this step q=q+c; % Accumulate into overall quotient r=r-diag(c)*B; % Subtract product from running total end R=r; ``` 上述代码实现了基本逻辑框架,在实际应用中可能还需要考虑更多细节处理如数值稳定性等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值