Tensorflow系列00:Win10下TensorFlow-gpu 1.8+cuda_9.0+cudnn安装

#安装TensorFlow基础环境

文章目录


Tensoflow官网:https://tensorflow.google.cn/
Tensoflow Github:https://github.com/tensorflow/tensorflow
Tensoflow 安装:官网说明 https://tensorflow.google.cn/install/
这些安装包的下载地址如下:
https://download.csdn.net/download/naploen8/10394583
Anaconda installer archive:
地址1: https://repo.continuum.io/archive/
地址2:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
https://mirror.tuna.tsinghua.edu.cn/help/anaconda/
##1.1 确定windows版本和想安装的Tensorflow的本版号:

  • Win 10 64 位
  • python 安装包 Anaconda3-5.1.0-Windows-x86_64.exe
  • cuda_9.0.176_win10.exe
  • cudnn-9.0-windows10-x64-v7.zip

##1.2 安装Anaconda
这里写图片描述

可以选择将python环境写入到path中,之后一直点下一步安装就好的

用pip安装依赖包时默认访问https://pypi.python.org/simple/,但是经常出现不稳定以及访问速度非常慢的情况,国内厂商提供的pipy镜像目前可用的有:

http://pypi.douban.com/ 豆瓣
http://pypi.hustunique.com/ 华中理工大学
http://pypi.sdutlinux.org/ 山东理工大学
http://pypi.mirrors.ustc.edu.cn/ 中国科学技术大学
http://mirrors.aliyun.com/pypi/simple/ 阿里云
https://pypi.tuna.tsinghua.edu.cn/simple 清华

安装时我们可以手动指定安装源如下:

pip -i http://pypi.douban.com/simple install keras

如果感觉每次安装都手动指定安装源麻烦的话,也可以配置pip更新源
不过这种方式在每次安装时都要手动指定,因此你可以把它写在配置文件中,这就是第二种方法,在当前用户目录下创建.pip文件夹

mkdir ~/.pip
然后在该目录下创建pip.conf文件填写:
[global]
trusted-host=mirrors.aliyun.com
index-url=http://mirrors.aliyun.com/pypi/simple/

上面配置是针对OSX/Linux系统,如果是Windows,那么创建%HOMEPATH%\pip\pip.ini文件来配置。
例如:C:\Users\用户名\pip\pip.ini
pip.ini配置的主要一些配置:

[global]
trusted-host=mirrors.aliyun.com
index-url=http://mirrors.aliyun.com/pypi/simple

类似win 设置pip目录:
1、打开appdata文件夹,在资源管理器的地址栏输入%appdata%后回车
2、新建一个pip文件夹,在pip文件夹里面新建一个配置文件pip.ini
3、输入代码:
[global]
timeout = 6000
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
trusted-host = pypi.tuna.tsinghua.edu.cn

可以选择创建一个Conda环境(这个可以省略):

打开Anaconda自带命令行工具Anaconda Prompt输入以下命令:
1.创建一个Conda环境
C:> conda create -n tensorflow
2.启用Conda环境
C:> activate tensorflow

1.3 安装tensorflow

pip install tensorflow

直接使用pip安装tensoflow 就可以安装成功

需要安装 tensorflow-gpu ,使用如下命令:

pip install tensorflow-gpu

tensoflow-gpu 在python上安装成功了

##1.4 cuda安装
tensorflow-gpu需要安装cuda环境,cuda的各个版本在下面网址,可以自行下载

下载地址: https://developer.nvidia.com/cuda-toolkit-archive

下载成功之后,直接点击安装,会自动安装到c盘的类似目录:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0

也会将cuda的path写入到win10 环境中,我们可以在win10环境中看到
这里写图片描述

需要在path中增加 cuda 的lib运行环境:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\lib\x64;

这里写图片描述

需要下载cudnn,下载地址如下:

https://developer.nvidia.com/rdp/cudnn-archive

这个需要注册然后才能下载,下载之后解压然后复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 这个目录。

执行下面的测试命令:

nvcc -V

如果安装正常的话,且组件都正常,则会输出驱动版本信息,表示安装成功,如下图:

在这里插入图片描述

##1.5 测试tensorflow 是否安装成功
例如:

import tensorflow as tf

hello = tf.constant("Hello!TensorFlow")
sess = tf.Session()
print(sess.run(hello))

这里写图片描述
##1.6 tensorflow 简单示例
tensorflow实现简单加法:
例如:

import tensorflow as tf
# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])
# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])
# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)
# 启动默认图.
sess = tf.Session()
# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数. 
# 上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# 矩阵乘法 op 的输出.
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
# 函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
# 返回值 'result' 是一个 numpy `ndarray` 对象.
result = sess.run(product)
print(result)
# ==> [[ 12.]]
# 任务完成, 关闭会话.
sess.close()

这里写图片描述

##1.7 常见python库下载地址

python库下载地址库很丰富,下载速度很快:
http://www.lfd.uci.edu/~gohlke/pythonlibs
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib

##1.8 最后:
这个系列文章作为自己学习Tensorflow的一个笔记,如有问题请及时指正,欢迎大家一起学习讨论,转载请注明出处,谢谢
https://blog.csdn.net/cool_easy/article/details/80245741

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值