关于e的一个重要不等式

这篇文章主要是介绍一个和e有关的重要不等式,该不等式的发现不仅证明了e的存在,也让人们发现了另一个常数:Euler常数

该常数是数列{bn}的数列极限:bn=1+1/2+1/3+...+1/n-ln(n)

不等式:(1+1/n)^n<e<(1+1/n)^{^{n+1}}

二项式公式如下:

下块是该不等式与e的关系:

 我们知道,e的起源来自于一个复利问题,即计算 (1+1/n)^n随着n的变化是怎么变化的。

我们将x=1,y=1/n代入即可得到(1+1/n)^n的二项式展开。

\alpha =1+1+\frac{\binom{2}{n}}{n^2}+...+\frac{\binom{n}{n}}{n^n}

由于我们需要研究该式随着n的变化是怎么样变化的,我们还需要了解y=1/(n+1)时的展开:

\beta =1+1+\frac{\binom{2}{n+1}}{(n+1)^2}+...+\frac{\binom{n+1}{n+1}}{(n+1)^n}

由于他们的前面n项非常神似,我们尝试着将他们的每一项进行比较,看看能不能发现什么东西:

在比较的过程中,由于:

\frac{\binom{k}{1+n}}{(1+n)^k}=\frac{(n+1)*n*(n-1)*...*(n-k+2)}{k*(k-1)*...*1*(n+1)^k}>\frac{n*(n-1)*...*(n-k+1)}{k*(k-1)*...*1*n^k}

故有\beta >\alpha,即我们知道该式子是随着n的增大而增大的。

同样,我们将(1+1/n)^{^{n+1}}进行研究:

我们知道该式子是随着n的增大而减小的。

则这两个式子有一个共同的极限,这个极限我们将它记为:e。

随着人们对e的不断探索,发现e为一个值为2.71828的超越数。

 下块是Euler常数的发现过程:

b_{n}=1+1/2+1/3+...+1/n-ln(n)

由于:(1+1/n)^n<e<(1+1/n)^{^{n+1}}

则:\frac{1}{n+1}<ln\frac{n+1}{n}<\frac{1}{n}

于是:b_{n+1}-b_{n}=\frac{1}{n+1}-ln\frac{n+1}{n}<0

故知b_{n}随着n的增大而逐渐减小

同样由于1+1/2+1/3+...+1/n-ln(n)>0

我们知道b_{n}有下界。

b_{n}收敛,经过带数字进行逼近,我们发现了Euler常数\gamma =0.557215....

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值