第五章 线性规划方法 Linear Programming

本文详细介绍了线性规划问题的一般形式、解的概念,特别是基本解、基本可行解及其产生与转换。重点讲解了基本可行解的最优性和非负性条件,并概述了单纯形算法的计算步骤,包括判别数和主元选择策略。
摘要由CSDN通过智能技术生成

5.1 线性规划问题的一般形式

5.2 线性规划问题的解

基本解: 只满足约束方程的解。
基本可行解: 同时满足约束方程和变量非负约束的解。
最优解: 使目标函数取得最小值的基本可行解。

5.2.1 基本解的产生与转换

线性规划问题的约束方程实际上是一个包括n个变量和m个方程(n>m)的线性方程组,由于变量个数多于方程数,故有多个满足方程的解。
若取n-m个变量并令其等于0,解出另外的m个不为0的变量,就可得到一个基本解。
在这样的基本解中,称n-m个为0的变量为非基本变量,另外的m个变量为基本变量。

5.2.2 基本可行解的产生与转换

根据线性规划问题的不同特征,一个初始基本可行解的获得可分为以下两种情况:

  1. 如果除变量非负约束之外的约束条件全是“ ≤ \leq ”的不等式约束,而且对应的常数向量中的元素均为正数,此时只要引入松弛变量,并以松弛变量为基本变量,得到的解就是一个基本可行解。
  2. 如果除变量非负约束之外的约束条件中还包含等式约束,此时可以在各个等式约束中分别引进一个与松弛变量类似的变量,称为人工变量,然后建立一个辅助规划问题求解此辅助规划问题,就可以得到一个基本可行解。

5.2.3 基本可行解的变换条件

1. 最优性条件
2. 非负性条件

5.3 单纯形算法 The Simplex Method

SIMPLEX TABLE x 1    x 2    ⋯    x n x_1 \ \ x_2 \ \ \cdots \ \ x_n x1  x2    xn x n + 1    x n + 2    ⋯    x n + m x_{n+1}\ \ x_{n+2}\ \ \cdots\ \ x_{n+m} xn+1  xn+2    xn+m b i b_i bi
Basic Variable Coefficients c 1      c 2    ⋯    c n c_1\ \ \ \ c_2\ \ \cdots\ \ c_n c1    c2    cn 0              0      ⋯      0 0 \ \ \ \ \ \ \ \ \ \ \ \ 0\ \ \ \ \cdots \ \ \ \ 0 0            0        0 c 0 c_0 c0
x n + 1 x_{n+1} xn+1 0 a 11    a 12 ⋯ a 1 n a_{11} \ \ a_{12} \cdots a_{1n} a11  a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值