题目
解释
- 归并排序和快排不同的是
- 先缩小区间直到区间长度范围是1,再逐渐放大,并且确保以mid为分界点
- 左区间和右区间各自是有序递增的,这样也就方便了while语句里将数依次放入tmp数组
- 每次都可以将这一个区间完全排序好
- 时间复杂度为O(nlogn)
代码段
#include<iostream>
using namespace std;
const int N=1e5+10;
int n,q[N],tmp[N];
void merge_sort(int l,int r)
{
if(l==r)return;
int mid=(l+r)/2;
merge_sort(l,mid),merge_sort(mid+1,r);
int k=0,i=l,j=mid+1;
while(i<=mid&&j<=r)
{
if(q[i]<=q[j])tmp[k++]=q[i++];
else
tmp[k++]=q[j++];
}
//由于区间是先缩小到1然后逐渐扩大,这样确保了
//在每次排序时左右区间各自都是有序的
//因此可以从小到大依次将整个区间元素放入tmp数组然后再交给真正的原数组
while(i<=mid)tmp[k++]=q[i++];
while(j<=r)tmp[k++]=q[j++];
//如果还有剩余多的将它继续存入tmp数组
for(int i=l,j=0;i<=r;i++)q[i]=tmp[j++];
}
int main()
{
cin>>n;a
for(int i=0;i<n;i++)
cin>>q[i];
merge_sort(0,n-1);
for(int i=0;i<n;i++)
cout<<q[i]<<' ';
return 0;
}
逆序对的数量
题目
、【算法】归并排序(逆序对的数量)_nathanqian123的博客-CSDN博客
解释
- 在单个区间的左右区间之间进行比较大小并排序的时候
- 由于左右区间之间是保序的且独立有序的,所以当q[i]>q[j]的时候
- q[i-mid]>q[j]的
- 因此更新逆序对数量为mid-i+1
代码段
#include<iostream>
using namespace std;
const int N=1e5+10;
#define ll long long
ll n,q[N],tmp[N],res;
void merge_sort(int l,int r)
{
if(l==r)return;
int mid=(l+r)/2;
int k=0,i=l,j=mid+1;
merge_sort(l,mid),merge_sort(mid+1,r);
while(i<=mid&&j<=r)
{
if(q[i]<=q[j])
{
tmp[k++]=q[i++];
}
else
{
tmp[k++]=q[j++];
res+=mid-i+1;
//因为q[i]>q[j]
//然而左区间和右区间之间都是保序没有交流过的
//q[i-mid]都是大于q[j]的
//逆序对数量为mid-i+1
}
}
while(i<=mid)tmp[k++]=q[i++];
while(j<=r)tmp[k++]=q[j++];
for(int i=l,j=0;i<=r;i++)q[i]=tmp[j++];
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
cin>>q[i];
merge_sort(0,n-1);
cout<<res<<endl;
return 0;
}