C#实现基于Logistic映射混沌加密算法(可加密静态图片和动态图片)

本文详细介绍了如何使用Logistic混沌加密算法对静态和动态图像进行加密。作者首先解释了Logistic映射的混沌特性,包括其随机性、规律性、遍历性和对初值的敏感性。接着,展示了加密过程的流程图和核心代码,特别是迭代函数和像素加密函数的实现。在实际应用中,该算法能有效加密静态图片,但在解密动态GIF图片时存在噪点问题。总结中强调了混沌加密算法的安全性、低代价和易实现性,但也指出了解密动态图像时遇到的挑战。

这是本菜鸡在《信息隐藏》中实现的图像加密,选用的是logistics混沌加密算法,希望对你的课设或项目有所帮助


基于Logistic映射混沌加密算法

逻辑斯蒂(Logistic)模型

在这里插入图片描述
其中,参数μ∈(0,4],Xn∈(0,1),当3.5699…<μ≤4时,系统处于混沌状态,混沌系统是指在一个确定性系统中,存在着貌似随机的不规则运动,其行为表现为不确定性、不可重复、不可预测,这就是混沌现象

特点

其中,0<u ≤4称为分支参数,Xn+1 ∈(0,1)。当 1≤u < u1=3.0时 ,系统的稳态解为不动点 即周期 1解 ;当 u=u1=3.0时 ,系统 的稳态解由周期 1变为周期 2,这是二分叉过程 ; 当u=u 2=3.449489时 ,系统 的稳态解 由周期 2 分叉为周期 4;当 u= u3=3.544090时,系统 的稳 态解由周期 4分叉 为周期 8;当 达到极限值 u=3.5699456时 ,系统的稳态解是周期 2 解 ,即 3. 5699456<u ≤4时 ,logistic映射呈现混沌状态。

u=4时的特点
随机性:当 b:4时,Logistic映射在有限迭 代 内不稳定运动 ,随后其长时间的动态行为将显示 随机性质 。
规律性:尽管 |Xn|体现出随机性质 ,但它是由确定性方程导出的,初值 x0确定后 Xn便 已确定 ,即其随机性是 内在的,这就是混沌运动的规律性
遍历性:混沌运动的遍历性是指混沌 变量 能在一定范 围内按其 自身规律不重复地遍历所有 状态。
对初值的敏感性:初值 x0的微小变化将 导致序列 {Xn}远期行为的巨大差异。
具有分形的性质:混沌的奇异吸引子在微 小尺度上具有与整体 自相似的几何结构。

二、混沌加密流程图

在这里插入图片描述

三、具体实现

在这里插入图片描述

四.核心代码实现

logistic迭代函数

private static double logistic(double u, double x, int n)
        {
   
   
            for (int i = 0; i < n; i++)
            {
   
   
                x = u * x * (1 - x);
            
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值