RocksDB原理介绍

RocksDB原理

RocksDB是facebook开源的NOSQL存储系统,其设计是基于Google开源的LevelDB,优化了LevelDB中存在的一些问题,其性能要比LevelDB强,设计与LevelDB极其类似。
LevelDB的开源发起者:Jeff Dean和Sanjay Ghemawat,这两位是Google公司重量级的工程师。
Jeff Dean是Google大规模分布式平台Bigtable和MapReduce主要设计和实现者。
Sanjay Ghemawat是Google大规模分布式平台GFS,Bigtable和MapReduce主要设计和实现工程师。
如果了解Bigtable的话,应该知道在这个影响深远的分布式存储系统中有两个核心的部分:Master Server和Tablet Server。其中Master Server做一些管理数据的存储以及分布式调度工作,实际的分布式数据存储以及读写操作是由Tablet Server完成的,而LevelDB则可以理解为一个简化版的Tablet Server。

RocksDB相对传统的关系数据库的一大改进是采用LSM树存储引擎。LSM树是非常有创意的一种数据结构,它和传统的B+树不太一样,下面先说说B+树。

B+树

在这里插入图片描述
上图是B+树的一个例子。 B+树根节点和枝节点分别记录每个叶子节点的最小值,并用一个指针指向叶子节点。叶子节点里每个键值都指向真正的数据块,每个叶子节点都有前指针和后指针,这是为了做范围查询时,叶子节点间可以直接跳转,从而避免再去回溯至枝和跟节点。
B+树最大的性能问题是会产生大量的随机IO,随着新数据的插入,叶子节点会慢慢分裂,逻辑上连续的叶子节点在物理上往往不连续,甚至分离的很远,但做范围查询时,会产生大量读随机IO。
对于大量的随机写也一样,举一个插入key跨度很大的例子,如7->1000->3->2000 … 新插入的数据存储在磁盘上相隔很远,会产生大量的随机写IO,低下的磁盘寻道速度严重影响性能。

LSM树(Log-Structured Merge Tree)

在这里插入图片描述
LSM树而且通过批量存储技术规避磁盘随机写入问题。 LSM树的设计思想非常朴素, 它的原理是把一颗大树拆分成N棵小树, 它首先写入到内存中(内存没有寻道速度的问题,随机写的性能得到大幅提升),在内存中构建一颗有序小树,随着小树越来越大,内存的小树会flush到磁盘上。磁盘中的树定期可以做merge操作,合并成一棵大树,以优化读性能。

LevelDB特点

  1. LevelDB是一个持久化存储的KV系统,和Redis这种内存型的KV系统不同,LevelDB不会像Redis一样狂吃内存,而是将大部分数据存储到磁盘上。
  2. LevleDb在存储数据时,是根据记录的key值有序存储的,就是说相邻的key值在存储文件中是依次顺序存储的,而应用可以自定义key大小比较函数。
  3. LevelDB支持数据快照(snapshot)功能,使得读取操作不受写操作影响,可以在读操作过程中始终看到一致的数据。
  4. LevelDB还支持数据压缩等操作,这对于减小存储空间以及增快IO效率都有直接的帮助。

RocksDB对LevelDB的优化

  1. 增加了column family,这样有利于多个不相关的数据集存储在同一个db中,因为不同column family的数据是存储在不同的sst和memtable中,所以一定程度上起到了隔离的作用。
  2. 采用了多线程同时进行compaction的方法,优化了compact的速度。
  3. 增加了merge operator,优化了modify的效率
  4. 将flush和compaction分开不同的线程池,能有效的加快flush,防止stall。
  5. 增加了对write ahead log(WAL)的特殊管理机制,这样就能方便管理WAL文件,因为WAL是binlog文件。
    RocksDB的整体结构:
    在这里插入图片描述
    rocksdb从3.0开始支持ColumnFamily的概念。每个columnfamilyl的meltable与sstable都是分开的,所以每一个column family都可以单独配置,所有column family共用同一个WA文件,可以保证跨column family写入时的原子性。

RocksDB 写入与删除

在这里插入图片描述
写操作包含两个具体步骤:

  1. 首先是将这条KV记录以顺序写的方式追加到log文件末尾,因为尽管这是一个磁盘读写操作,但是文件的顺序追加写入效率是很高的,所以并不会导致写入速度的降低。
  2. 第二个步骤是:如果写入log文件成功,那么将这条KV记录插入内存中的Memtable中,Memtable只是一层封装,其内部其实是一个Key有序的SkipList列表,插入一条新记录的过程也很简单,即先查找合适的插入位置,然后修改相应的链接指针将新记录插入即可。完成这一步,写入记录就算完成了,所以一个插入记录操作涉及一次磁盘文件追加写和内存SkipList插入操作,这是为何RocksDB写入速度如此高效的根本原因。
    删除操作与插入操作相同,区别是,插入操作插入的是Key:Value值,而删除操作插入的是“Key:删除标记”,并不真正去删除记录,而是后台Compaction的时候才去做真正的删除操作。

RocksDB 读取记录

在这里插入图片描述
RocksDB首先会去查看内存中的Memtable,如果Memtable中包含key及其对应的value,则返回value值即可;如果在Memtable没有读到key,则接下来到同样处于内存中的Immutable Memtable中去读取,类似地,如果读到就返回,若是没有读到,那么会从磁盘中的SSTable文件中查找。
总的读取原则是这样的:首先从属于level 0的文件中查找,如果找到则返回对应的value值,如果没有找到那么到level 1中的文件中去找,如此循环往复,直到在某层SSTable文件中找到这个key对应的value为止(或者查到最高level,查找失败,说明整个系统中不存在这个Key)。
相对写操作,读操作处理起来要复杂很多。RocksDB为了提高读取速递,增加了读cache和Bloomfilter。

<think>好的,用户想了解RocksDB介绍数据库引擎特点以及使用场景。首先,我需要整理RocksDB的基础知识,确保信息准确。根据提供的引用内容,RocksDB是一个基于LSM-Tree的键值存储引擎,由Facebook开发,适用于高性能场景。特点方面,应该包括高性能写入、压缩优化、灵活配置等。 接下来,要区分RocksDB和传统如InnoDB的不同。InnoDB使用B+树,适合事务处理;而RocksDB的LSM-Tree更适合写密集型任务。需要对比两者的底层原理,优缺点,以及应用场景,如引用1中提到的。 使用场景部分,引用2和3提到了在分布式系统(如TiKV)、Redis持久化(如Pika)中的应用。需要具体说明这些应用实例,帮助用户理解适用情况。 用户可能需要了解基础操作,比如安装和接口使用,引用2提到了安装指南,可以简要提及。同时,考虑用户可能的后续问题,比如性能优化或与其他引擎的比较,提前准备相关问题。 最后,确保回答结构清晰,分点列出,并正确引用来源。检查LaTeX格式是否符合要求,数学表达式用$...$,独立公式用$$...$$,但当前内容可能较少涉及数学,需注意是否有需要格式化的部分。保持语言简洁,用中文自然表达,避免技术术语过多,让用户易于理解。</think>### RocksDB数据库引擎详解 #### 一、核心介绍 RocksDB是由Facebook开发的$高性能键值存储引擎$,基于Google的LevelDB改进而来,采用$LSM-Tree(Log-Structured Merge-Tree)$数据结构实现[^1]。其核心设计目标是应对现代存储设备的特性(如SSD)和满足高吞吐量场景需求。 #### 二、技术特点 1. **写入性能优化** $$ \text{写入吞吐量} \propto \frac{\text{顺序写入速度}}{\text{数据压缩率}} $$ 通过批量写入(MemTable)和分层合并(Compaction)机制,实现比B+树引擎高10倍以上的写入性能[^1] 2. **压缩机制** 支持Snappy/ZSTD等多级压缩算法,通过`options.compression`参数可配置不同层级的压缩策略 3. **可调式持久化** 提供`WAL(Write-Ahead Logging)`和`Flush`的异步/同步控制,允许在数据安全性与性能之间灵活权衡 4. **多线程支持** 内置线程池管理compaction和flush操作,通过`max_background_jobs`参数控制并发度 #### 三、应用场景对比 | 场景特征 | 推荐引擎 | 典型TPS | |-------------------|----------|---------------| | 写密集型(日志) | RocksDB | 50万+/秒 | | OLTP事务处理 | InnoDB | 1万-5万/秒 | | 时序数据存储 | RocksDB | 10万+/秒 | | 二级索引查询 | InnoDB | 5千-2万/秒 | #### 四、典型应用案例 1. **TiDB分布式数据库** TiKV使用RocksDB作为底层存储引擎,支持分布式事务的持久化存储[^3] 2. **Redis持久化方案** Pika数据库通过RocksDB实现Redis协议支持的数据结构持久化[^2] 3. **MySQL可插拔引擎** Facebook维护的MySQL分支支持将RocksDB作为存储引擎 ```cpp // 基础API示例(C++) rocksdb::DB* db; rocksdb::Options options; options.create_if_missing = true; rocksdb::Status status = rocksdb::DB::Open(options, "/tmp/testdb", &db); std::string value; rocksdb::Status s = db->Get(rocksdb::ReadOptions(), "key1", &value); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值