高等数学(第七版)同济大学 习题1-2 个人解答

本文详细探讨了数列的收敛性,分析了8个数列的极限,指出数列的有界性和无界性与收敛性的关系,并证明了几个极限性质,如数列绝对值的极限、部分项的极限与整体极限的关系。同时,讨论了如何利用数列极限的定义进行证明,并给出了实际例子来说明即使部分项有极限,整个数列也可能无极限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高等数学(第七版)同济大学 习题1-2

 

1. 下列各题中,哪些数列收敛,哪些数列发散?对收敛数列,通过观察 ∣ X n ∣ 的变化趋势, 写出它们的极限: \begin{aligned}&1. 下列各题中,哪些数列收敛,哪些数列发散?对收敛数列,通过观察|X_n|的变化趋势,\\\\&写出它们的极限:&\end{aligned} 1.下列各题中,哪些数列收敛,哪些数列发散?对收敛数列,通过观察Xn的变化趋势,写出它们的极限:

   ( 1 )   { 1 2 n } ;                 ( 2 )   { ( − 1 ) n 1 n } ;    ( 3 )   { 2 + 1 n 2 } ;          ( 4 )   { n − 1 n + 1 } ;    ( 5 )   { n ( − 1 ) n } ;             ( 6 )   { 2 n − 1 3 n } ;    ( 7 )   { n − 1 n } ;            ( 8 )   { [ ( − 1 ) n + 1 ] n + 1 n } \begin{aligned} &\ \ (1)\ \left\{\frac{1}{2^n}\right\};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \left\{(-1)^n\frac{1}{n}\right\};\\\\ &\ \ (3)\ \left\{2+\frac{1}{n^2}\right\};\ \ \ \ \ \ \ \ \ (4)\ \left\{\frac{n-1}{n+1}\right\};\\\\ &\ \ (5)\ \{n(-1)^n\};\ \ \ \ \ \ \ \ \ \ \ \ (6)\ \left\{\frac{2^n-1}{3^n}\right\};\\\\ &\ \ (7)\ \left\{n-\frac{1}{n}\right\};\ \ \ \ \ \ \ \ \ \ \ (8)\ \left\{[(-1)^n+1]\frac{n+1}{n}\right\} & \end{aligned}   (1) {2n1}                (2) {(1)nn1}  (3) {2+n21}         (4) {n+1n1}  (5) {n(1)n}            (6) {3n2n1}  (7) {nn1}           (8) {[(1)n+1]nn+1}

解:

   ( 1 )  当 n → ∞ 时, 1 2 n 趋向于 0 ,因此数列是收敛的, lim ⁡ n → ∞ 1 2 n = 0    ( 2 )  当 n → ∞ 时, ( − 1 ) n 1 n 趋向于 0 ,因此数列是收敛的, lim ⁡ n → ∞ ( − 1 ) n 1 n = 0    ( 3 )  当 n → ∞ 时, 1 n 2 趋向于 0 ,即 2 + 1 n 2 趋向于 2 ,因此数列是收敛的, lim ⁡ n → ∞ ( 2 + 1 n 2 ) = 2    ( 4 )   n − 1 n + 1 = 1 − 1 n 1 + 1 n ,当 n → ∞ 时, 1 − 1 n 1 + 1 n 趋向于 1 ,因此数列是收敛的, lim ⁡ n → ∞ n − 1 n + 1 = 1    ( 5 )  当 n → ∞ 时, n ( − 1 ) n 趋向于 ∞ ,因此数列是发散的。    ( 6 )   2 n − 1 3 n = ( 2 3 ) n − 1 3 n ,当 n → ∞ 时, ( 2 3 ) n − 1 3 n 趋向于 0 ,因此数列是收敛的, lim ⁡ n → ∞ 2 n − 1 3 n = 0    ( 7 )  当 n → ∞ 时, n − 1 n 趋向于 ∞ ,因此数列是发散的。    ( 8 )   [ ( − 1 ) n + 1 ] n + 1 n = [ ( − 1 ) n + 1 ] ( 1 + 1 n ) ,当 n → ∞ 时, [ ( − 1 ) n + 1 ] ( 1 + 1 n ) 趋向于反复在数字 0 , 2 跳动,   因此数列是发散的。 \begin{aligned} &\ \ (1)\ 当n \rightarrow \infty时,\frac{1}{2^n}趋向于0,因此数列是收敛的,\lim_{n \rightarrow \infty}\frac{1}{2^n}=0\\\\ &\ \ (2)\ 当n \rightarrow \infty时,(-1)^n\frac{1}{n}趋向于0,因此数列是收敛的,\lim_{n \rightarrow \infty}(-1)^n\frac{1}{n}=0\\\\ &\ \ (3)\ 当n \rightarrow \infty时,\frac{1}{n^2}趋向于0,即2+\frac{1}{n^2}趋向于2,因此数列是收敛的,\lim_{n \rightarrow \infty}\left(2+\frac{1}{n^2}\right)=2\\\\ &\ \ (4)\ \frac{n-1}{n+1}=\frac{1-\frac{1}{n}}{1+\frac{1}{n}},当n \rightarrow \infty时,\frac{1-\frac{1}{n}}{1+\frac{1}{n}}趋向于1,因此数列是收敛的,\lim_{n \rightarrow \infty}\frac{n-1}{n+1}=1\\\\ &\ \ (5)\ 当n \rightarrow \infty时,n(-1)^n趋向于\infty,因此数列是发散的。\\\\ &\ \ (6)\ \frac{2^n-1}{3^n}=\left(\frac{2}{3}\right)^n-\frac{1}{3^n},当n \rightarrow \infty时,\left(\frac{2}{3}\right)^n-\frac{1}{3^n}趋向于0,因此数列是收敛的,\lim_{n \rightarrow \infty}\frac{2^n-1}{3^n}=0\\\\ &\ \ (7)\ 当n \rightarrow \infty时,n-\frac{1}{n}趋向于\infty,因此数列是发散的。\\\\ &\ \ (8)\ [(-1)^n+1]\frac{n+1}{n}=[(-1)^n+1]\left(1+\frac{1}{n}\right),当n \rightarrow \infty时,[(-1)^n+1]\left(1+\frac{1}{n}\right)趋向于反复在数字0,2跳动,\\\\&\ \ 因此数列是发散的。\\\\ & \end{aligned}   (1) n时,2n1趋向于0,因此数列是收敛的,nlim2n1=0  (2) n时,(1)nn1趋向于0,因此数列是收敛的,nlim(1)nn1=0  (3) n时,n21趋向于0,即2+n21趋向于2,因此数列是收敛的,nlim(2+n21)=2  (4) n+1n1=1+n11n1,当n时,1+n11n1趋向于1,因此数列是收敛的,nlimn+1n1=1  (5) n时,n(1)n趋向于,因此数列是发散的。  (6) 3n2n1=(32)n3n1,当n时,(32)n3n1趋向于0,因此数列是收敛的,nlim3n2n1=0  (7) n时,nn1趋向于,因此数列是发散的。  (8) [(1)n+1]nn+1=[(1)n+1](1+n1),当n时,[(1)n+1](1+n1)趋向于反复在数字02跳动,  因此数列是发散的。


2.   ( 1 ) 数列的有界性是数列收敛的什么条件?      ( 2 ) 无界数列是否一定发散?      ( 3 ) 有界数列是否一定收敛? \begin{aligned}&2. \ (1)数列的有界性是数列收敛的什么条件?\\\\&\ \ \ \ (2)无界数列是否一定发散?\\\\&\ \ \ \ (3)有界数列是否一定收敛?&\end{aligned} 2. (1)数列的有界性是数列收敛的什么条件?    (2)无界数列是否一定发散?    (3)有界数列是否一定收敛?
解:

   ( 1 )  数列的有界性是数列收敛的必要条件。    ( 2 )  无界数列一定发散。    ( 3 )  有界数列不一定收敛。例如,数列 { ( − 1 ) n } 发散。 \begin{aligned} &\ \ (1)\ 数列的有界性是数列收敛的必要条件。\\\\ &\ \ (2)\ 无界数列一定发散。\\\\ &\ \ (3)\ 有界数列不一定收敛。例如,数列\{(-1)^n\}发散。\\\\ & \end{aligned}   (1) 数列的有界性是数列收敛的必要条件。  (2) 无界数列一定发散。  (3) 有界数列不一定收敛。例如,数列{(1)n}发散。


3.  下列关于数列 ∣ x n ∣ 的极限是 a 的定义,哪些是对的,哪些是错的?如果是对的,试说明理由;如果是错的,     试给出一个反例。 \begin{aligned}&3. \ 下列关于数列|x_n|的极限是a的定义,哪些是对的,哪些是错的?如果是对的,试说明理由;如果是错的,\\\\&\ \ \ \ 试给出一个反例。&\end{aligned} 3. 下列关于数列xn的极限是a的定义,哪些是对的,哪些是错的?如果是对的,试说明理由;如果是错的,    试给出一个反例。

   ( 1 )  对于任意给定的 ε > 0 ,存在 N ∈ N + ,当 n > N 时,不等式 x n − a < ε 成立;    ( 2 )  对于任意给定的 ε > 0 ,存在 N ∈ N + ,当 n > N 时,有无穷多项 x n ,使不等式 ∣ x n − a ∣ < ε 成立;    ( 3 )  对于任意给定的 ε > 0 ,存在 N ∈ N + ,当 n > N 时,不等式 ∣ x n − a ∣ < c ε 成立,其中 c 为某个正常数;    ( 4 )  对于任意给定的 m ∈ N + ,存在 N ∈ N + ,当 n > N 时,不等式 ∣ x n − a ∣ < 1 m 成立。 \begin{aligned} &\ \ (1)\ 对于任意给定的\varepsilon \gt 0,存在N \in \mathbb{N_+},当n \gt N时,不等式x_n-a \lt \varepsilon成立;\\\\ &\ \ (2)\ 对于任意给定的\varepsilon \gt 0,存在N \in \mathbb{N_+},当n \gt N时,有无穷多项x_n,使不等式|x_n-a| \lt \varepsilon成立;\\\\ &\ \ (3)\ 对于任意给定的\varepsilon \gt 0,存在N \in \mathbb{N_+},当n \gt N时,不等式|x_n-a| \lt c\varepsilon成立,其中c为某个正常数;\\\\ &\ \ (4)\ 对于任意给定的m \in \mathbb{N_+},存在N \in \mathbb{N_+},当n \gt N时,不等式|x_n-a| \lt \frac{1}{m}成立。\\\\ & \end{aligned}   (1) 对于任意给定的ε>0,存在NN+,当n>N时,不等式xna<ε成立;  (2) 对于任意给定的ε>0,存在NN+,当n>N时,有无穷多项xn,使不等式xna<ε成立;  (3) 对于任意给定的ε>0,存在NN+,当n>N时,不等式xna<cε成立,其中c为某个正常数;  (4) 对于任意给定的mN+,存在NN+,当n>N时,不等式xna<m1成立。

解:

   ( 1 )  错误,数列 { ( − 1 ) n + 1 n } , a = 1 , ∀   ε > 0 , ∃   N = [ 1 ε ] ,当 n > N 时, ( − 1 ) n + 1 n − 1 ≤ 1 n < ε ,          但 { ( − 1 ) n + 1 n } 的极限不存在。    ( 2 )  错误,数列 x n = { n ,        n = 2 k − 1 , 1 − 1 n , n = 2 k , , k ∈ N + , a = 1 。 ∀   ε > 0 , ∃ N = [ 1 ε ] ,当 n > N 且 n 为偶数时,          ∣ x n − a ∣ = 1 n < ε 成立,但 { x n } 的极限不存在。    ( 3 )  正确, ∀ ε > 0 ,取 1 c   ε > 0 ,按假设, ∃ N ∈ N + ,当 n > N 时,不等式 ∣ x n − a ∣ < c ⋅ 1 c ε = ε 成立。    ( 4 )  正确, ∀ ε > 0 ,取 m ∈ N + ,使 1 m < ε ,按假设, ∃ N ∈ N + ,当 n > N 时,不等式 ∣ x n − a ∣ < 1 m < ε 成立。 \begin{aligned} &\ \ (1)\ 错误,数列\left\{(-1)^n+\frac{1}{n}\right\},a=1,\forall\ \varepsilon \gt 0,\exists\ N=\left[\frac{1}{\varepsilon}\right],当n\gt N时,(-1)^n+\frac{1}{n}-1\le \frac{1}{n}\lt \varepsilon,\\\\ &\ \ \ \ \ \ \ \ \ 但\left\{(-1)^n+\frac{1}{n}\right\}的极限不存在。\\\\ &\ \ (2)\ 错误,数列x_n=\begin{cases}n,\ \ \ \ \ \ \ n=2k-1,\\\\1-\frac{1}{n},n=2k,\end{cases},k\in N_+,a=1。\forall\ \varepsilon\gt 0,\exists N=\left[\frac{1}{\varepsilon}\right],当n \gt N且n为偶数时,\\\\ &\ \ \ \ \ \ \ \ |x_n-a|=\frac{1}{n} \lt \varepsilon成立,但\{x_n\}的极限不存在。\\\\ &\ \ (3)\ 正确,\forall \varepsilon \gt 0,取\frac{1}{c}\ \varepsilon \gt 0,按假设,\exists N \in N_+,当n \gt N时,不等式|x_n-a| \lt c \cdot \frac{1}{c}\varepsilon = \varepsilon成立。\\\\ &\ \ (4)\ 正确,\forall \varepsilon \gt 0,取m \in N_+,使\frac{1}{m} \lt \varepsilon,按假设,\exists N \in N_+,当n \gt N时,不等式|x_n-a| \lt \frac{1}{m} \lt \varepsilon成立。\\\\ & \end{aligned}   (1) 错误,数列{(1)n+n1}a=1 ε>0 N=[ε1],当n>N时,(1)n+n11n1<ε         {(1)n+n1}的极限不存在。  (2) 错误,数列xn= n       n=2k11n1n=2kkN+a=1 ε>0N=[ε1],当n>Nn为偶数时,        xna=n1<ε成立,但{xn}的极限不存在。  (3) 正确,ε>0,取c1 ε>0,按假设,NN+,当n>N时,不等式xna<cc1ε=ε成立。  (4) 正确,ε>0,取mN+,使m1<ε,按假设,NN+,当n>N时,不等式xna<m1<ε成立。


4.  设数列 x n 的一般项 x n = 1 n c o s   n π 2 ,问 lim ⁡ n → ∞ x n = ? 求出 N ,使当 n > N 时, x n 与其极限之差的绝对值     小于正数 ε 。当 ε = 0.001 时,求出数 N 。 \begin{aligned}&4. \ 设数列{x_n}的 一般项x_n=\frac{1}{n}cos\ \frac{n\pi}{2},问\lim_{n \rightarrow \infty}x_n=?求出N,使当n \gt N时,x_n与其极限之差的绝对值\\\\&\ \ \ \ 小于正数\varepsilon。当\varepsilon=0.001时,求出数N。&\end{aligned} 4. 设数列xn的一般项xn=n1cos 2,问nlimxn=?求出N,使当n>N时,xn与其极限之差的绝对值    小于正数ε。当ε=0.001时,求出数N
解:

   lim ⁡ n → ∞ x n = 0     ∣ x n − 0 ∣ = ∣ 1 n c o s   n π 2 ∣ ≤ 1 n ,要使 ∣ x n − 0 ∣ < ε ,只要 1 n l t ε ,即 n > 1 ε ,所以 ∀   ε > 0 ,取 N = [ 1 ε ] ,则当 n > N 时,    就有 ∣ x n − 0 ∣ < ε 。    当 ε = 0.001 时,取 N = [ 1 ε ] = 1000 。即若 ε = 0.001 ,只要 n > 1000 ,就有 ∣ x n − 0 ∣ < 0.001 。 \begin{aligned} &\ \ \lim_{n \rightarrow \infty}x_n=0\\\\ &\ \ \ |x_n-0|=|\frac{1}{n}cos\ \frac{n\pi}{2}| \le \frac{1}{n},要使|x_n-0| \lt \varepsilon,只要\frac{1}{n} lt \varepsilon,即n \gt \frac{1}{\varepsilon},所以\forall \ \varepsilon \gt 0,取N=\left[\frac{1}{\varepsilon}\right],则当n \gt N时,\\\\ &\ \ \ 就有|x_n-0| \lt \varepsilon。\\\\ &\ \ \ 当\varepsilon=0.001时,取N=\left[\frac{1}{\varepsilon}\right]=1000。即若\varepsilon=0.001,只要n \gt 1000,就有|x_n-0| \lt 0.001。\\\\ & \end{aligned}   nlimxn=0   xn0∣=n1cos 2n1,要使xn0∣<ε,只要n1ltε,即n>ε1,所以 ε>0,取N=[ε1],则当n>N时,   就有xn0∣<ε   ε=0.001时,取N=[ε1]=1000。即若ε=0.001,只要n>1000,就有xn0∣<0.001


5.  根据数列极限的定义证明:    ( 1 )   lim ⁡ n → ∞ 1 n 2 = 0                  ( 2 )   lim ⁡ n → ∞ 3 n + 1 2 n + 1 = 3 2    ( 3 )   lim ⁡ n → ∞ n 2 + a 2 n = 1      ( 4 )   lim ⁡ n → ∞ 0. 999 ⋅ ⋅ ⋅ 9 ⏟ n 个 = 1 \begin{aligned}&5. \ 根据数列极限的定义证明:\\\\&\ \ (1)\ \lim_{n \rightarrow \infty}\frac{1}{n^2}=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \lim_{n \rightarrow \infty}\frac{3n+1}{2n+1}=\frac{3}{2}\\\\&\ \ (3)\ \lim_{n \rightarrow \infty}\frac{\sqrt{n^2+a^2}}{n}=1\ \ \ \ (4)\ \lim_{n \rightarrow \infty}0.\underbrace{999\cdot\cdot\cdot9}_{n个}=1&\end{aligned} 5. 根据数列极限的定义证明:  (1) nlimn21=0                (2) nlim2n+13n+1=23  (3) nlimnn2+a2 =1    (4) nlim0.n 9999=1
解:

   ( 1 )   ∣ x n − 0 ∣ = 1 n 2 , ∀   ε > 0 ,为了使 ∣ x n − 0 ∣ < ε ,只要 1 n 2 < ε 或 n > 1 ε ,取 N = [ 1 ε ] ,          则当 n > N 时,就有 ∣ 1 n 2 − 0 ∣ < ε ,即 lim ⁡ n → ∞ 1 n 2 = 0 。    ( 2 )   ∣ x n − 3 2 ∣ = 1 4 n + 2 < 1 4 n , ∀   ε > 0 ,为了使 ∣ x n − 3 2 ∣ < ε ,只要 1 4 n < ε 或 n > 1 4 ε ,          取 N = [ 1 4 ε ] ,则当 n > N 时,就有 ∣ 3 n + 1 2 n + 1 − 3 2 ∣ < ε ,即 lim ⁡ n → ∞ 3 n + 1 2 n + 1 = 3 2 。    ( 3 )   ∣ x n − 1 ∣ = ∣ n 2 + a 2 n − 1 ∣ = a 2 n ( n 2 + a 2 + n ) = a 2 n 2 + n n 2 + a 2 < a 2 2 n 2 , ∀   ε > 0 ,          为了使 ∣ x n − 1 ∣ < ε ,只要 a 2 2 n 2 < ε 或 n > ∣ a ∣ 2 ε ,取 N = [ ∣ a ∣ 2 ε ] ,则当 n > N 时,就有           ∣ n 2 + a 2 n − 1 ∣ < ε ,即 lim ⁡ n → ∞ n 2 + a 2 n = 1 。    ( 4 )   ∣ x n − 1 ∣ = ∣ 0. 999 ⋅ ⋅ ⋅ 9 ⏟ n 个 − 1 ∣ = ∣ − 0. 111 ⋅ ⋅ ⋅ 1 ⏟ n 个 ∣ = 1 1 0 n , ∀   ε > 0 ,为了使 ∣ x n − 1 ∣ < ε ,         只要 1 1 0 n < ε 或 n > l g   1 ε ,取 N = [ l g   1 ε ] ,则当 n > N 时,就有 ∣ x n − 1 ∣ < ε ,即 lim ⁡ n → ∞ 0. 999 ⋅ ⋅ ⋅ 9 ⏟ n 个 = 1 。 \begin{aligned} &\ \ (1)\ |x_n-0|=\frac{1}{n^2},\forall\ \varepsilon \gt 0,为了使|x_n-0| \lt \varepsilon,只要\frac{1}{n^2} \lt \varepsilon或n \gt \frac{1}{\sqrt{\varepsilon}},取N=\left[\frac{1}{\sqrt{\varepsilon}}\right],\\\\&\ \ \ \ \ \ \ \ \ 则当n \gt N时,就有|\frac{1}{n^2}-0| \lt \varepsilon,即\lim_{n \rightarrow \infty}\frac{1}{n^2}=0。\\\\ &\ \ (2)\ \left|x_n-\frac{3}{2}\right|=\frac{1}{4n+2} \lt \frac{1}{4n},\forall\ \varepsilon \gt 0,为了使\left|x_n-\frac{3}{2}\right| \lt \varepsilon,只要\frac{1}{4n} \lt \varepsilon或n \gt \frac{1}{4\varepsilon},\\\\&\ \ \ \ \ \ \ \ \ 取N=\left[\frac{1}{4\varepsilon}\right],则当n \gt N时,就有\left|\frac{3n+1}{2n+1}-\frac{3}{2}\right| \lt \varepsilon,即\lim_{n \rightarrow \infty}\frac{3n+1}{2n+1}=\frac{3}{2}。\\\\ &\ \ (3)\ |x_n-1|=\left|\frac{\sqrt{n^2+a^2}}{n}-1\right|=\frac{a^2}{n(\sqrt{n^2+a^2}+n)}=\frac{a^2}{n^2+n\sqrt{n^2+a^2}}\lt \frac{a^2}{2n^2},\forall\ \varepsilon \gt 0,\\\\&\ \ \ \ \ \ \ \ \ 为了使|x_n-1| \lt \varepsilon,只要\frac{a^2}{2n^2} \lt \varepsilon或n \gt \frac{|a|}{\sqrt{2\varepsilon}},取N=\left[\frac{|a|}{\sqrt{2\varepsilon}}\right],则当n \gt N时,就有\\\\&\ \ \ \ \ \ \ \ \ \left|\frac{\sqrt{n^2+a^2}}{n}-1\right|\lt \varepsilon,即\lim_{n \rightarrow \infty}\frac{\sqrt{n^2+a^2}}{n}=1。\\\\ &\ \ (4)\ |x_n-1|=|0.\underbrace{999\cdot\cdot\cdot9}_{n个}-1|=|-0.\underbrace{111\cdot\cdot\cdot1}_{n个}|=\frac{1}{10^n},\forall\ \varepsilon \gt 0,为了使|x_n-1| \lt \varepsilon,\\\\&\ \ \ \ \ \ \ \ 只要\frac{1}{10^n} \lt \varepsilon或n \gt lg\ \frac{1}{\varepsilon},取N=\left[lg\ \frac{1}{\varepsilon}\right],则当n \gt N时,就有|x_n-1| \lt \varepsilon,即\lim_{n \rightarrow \infty}0.\underbrace{999\cdot\cdot\cdot9}_{n个}=1。\\\\ & \end{aligned}   (1) xn0∣=n21 ε>0,为了使xn0∣<ε,只要n21<εn>ε 1,取N=[ε 1]         则当n>N时,就有n210∣<ε,即nlimn21=0  (2)  xn23 =4n+21<4n1 ε>0,为了使 xn23 <ε,只要4n1<εn>4ε1         N=[4ε1],则当n>N时,就有 2n+13n+123 <ε,即nlim2n+13n+1=23  (3) xn1∣= nn2+a2 1 =n(n2+a2 +n)a2=n2+nn2+a2 a2<2n2a2 ε>0         为了使xn1∣<ε,只要2n2a2<εn>2ε a,取N=[2ε a],则当n>N时,就有          nn2+a2 1 <ε,即nlimnn2+a2 =1  (4) xn1∣=∣0.n 99991∣=0.n 1111=10n1 ε>0,为了使xn1∣<ε        只要10n1<εn>lg ε1,取N=[lg ε1],则当n>N时,就有xn1∣<ε,即nlim0.n 9999=1


6.  若 lim ⁡ n → ∞ μ n = a ,证明 lim ⁡ n → ∞ ∣ μ n ∣ = ∣ a ∣ ,并举例说明:如果数列 { ∣ x n ∣ } 有极限,但数列 { x n } 未必有极限。 \begin{aligned}&6. \ 若\lim_{n \rightarrow \infty}\mu_n=a,证明\lim_{n \rightarrow \infty}|\mu_n|=|a|,并举例说明:如果数列\{|x_n|\}有极限,但数列\{x_n\}未必有极限。&\end{aligned} 6. nlimμn=a,证明nlimμn=a,并举例说明:如果数列{xn}有极限,但数列{xn}未必有极限。
解:

  因为 lim ⁡ n → ∞ μ n = a ,所以 ∀   ε > 0 , ∃   N ,当 n > N 时,有 ∣ μ n − a ∣ < ε ,因 ∣ ∣ μ n ∣ − ∣ a ∣ ∣ ≤ ∣ μ n − a ∣ < ε ,所以 lim ⁡ n → ∞ ∣ μ n ∣ = ∣ a ∣ 。   由 lim ⁡ n → ∞ ∣ μ n ∣ = ∣ a ∣ ,不能推得 lim ⁡ n → ∞ μ n = a ,例如数列 { ( − 1 ) n } , lim ⁡ n → ∞ ∣ ( − 1 ) n ∣ = 1 ,但是 { ( − 1 ) n } 没有极限。 \begin{aligned} &\ \ 因为\lim_{n \rightarrow \infty}\mu_n=a,所以\forall\ \varepsilon \gt 0,\exists\ N,当n \gt N时,有|\mu_n-a| \lt \varepsilon,因||\mu_n|-|a|| \le |\mu_n-a|\lt \varepsilon,所以\lim_{n \rightarrow \infty}|\mu_n|=|a|。\\\\ &\ \ 由\lim_{n \rightarrow \infty}|\mu_n|=|a|,不能推得\lim_{n \rightarrow \infty}\mu_n=a,例如数列\{(-1)^n\},\lim_{n \rightarrow \infty}|(-1)^n|=1,但是\{(-1)^n\}没有极限。 & \end{aligned}   因为nlimμn=a,所以 ε>0 N,当n>N时,有μna<ε,因∣∣μna∣∣μna<ε,所以nlimμn=a  nlimμn=a,不能推得nlimμn=a,例如数列{(1)n}nlim(1)n=1,但是{(1)n}没有极限。


7.  设数列 { x n } 有界,又 lim ⁡ n → ∞ y n = 0 ,证明: lim ⁡ n → ∞ x n y n = 0 。 \begin{aligned}&7. \ 设数列\{x_n\}有界,又\lim_{n \rightarrow \infty}y_n=0,证明:\lim_{n \rightarrow \infty}x_ny_n=0。&\end{aligned} 7. 设数列{xn}有界,又nlimyn=0,证明:nlimxnyn=0
解:

  因数列 { x n } 有界,故 ∃   M > 0 ,使得对于一切 n 有 ∣ x n ∣ ≤ M 。 ∀   ε > 0 ,由于 lim ⁡ n → ∞ y n = 0 ,故对 ε 1 = ε M > 0 ,    ∃   N ,当 n > N 时,就有 ∣ y n ∣ < ε 1 = ε M ,从而有 ∣ x n y n − 0 ∣ = ∣ x n ∣ ⋅ ∣ y n ∣ < M   ⋅   ε M = ε ,所以 lim ⁡ n → ∞ ∣ x n y n ∣ = 0 。 \begin{aligned} &\ \ 因数列\{x_n\}有界,故\exists\ M \gt 0,使得对于一切n有|x_n| \le M。\forall\ \varepsilon \gt 0,由于\lim_{n \rightarrow \infty}y_n=0,故对\varepsilon_1=\frac{\varepsilon}{M}\gt 0,\\\\&\ \ \exists\ N,当n \gt N时,就有|y_n| \lt \varepsilon_1=\frac{\varepsilon}{M},从而有|x_ny_n-0|=|x_n|\cdot|y_n| \lt M\ \cdot\ \frac{\varepsilon}{M}=\varepsilon,所以\lim_{n \rightarrow \infty}|x_ny_n|=0。\\\\ & \end{aligned}   因数列{xn}有界,故 M>0,使得对于一切nxnM ε>0,由于nlimyn=0,故对ε1=Mε>0   N,当n>N时,就有yn<ε1=Mε,从而有xnyn0∣=xnyn<M  Mε=ε,所以nlimxnyn=0


8.  对于数列 { x n } ,若 x 2 k − 1 → a   ( k → ∞ ) , x 2 k → a   ( k → ∞ ) ,证明: x n → a   ( n → ∞ ) 。 \begin{aligned}&8. \ 对于数列\{x_n\},若x_{2k-1}\rightarrow a\ (k \rightarrow \infty),x_{2k}\rightarrow a\ (k\rightarrow \infty),证明:x_n\rightarrow a\ (n\rightarrow \infty)。&\end{aligned} 8. 对于数列{xn},若x2k1a (k)x2ka (k),证明:xna (n)
解:

  因为 x 2 k − 1 → a   ( k → ∞ ) ,所以 ∀   ε > 0 , ∃   k 1 ,当 k > k 1 时,有 ∣ x 2 k − 1 − a ∣ < ε ;又因为 x 2 k → a   ( k → ∞ ) ,   所以 ∀   ε > 0 , ∃   k 2 ,当 k > k 2 时,有 ∣ x 2 k − a ∣ < ε 。记 K = m a x { k 1 ,   k 2 } ,取 N = 2 K ,则当 n > N 时,   若 n = 2 k − 1 , 2 k − 1 > 2 K ,则 k > K + 1 2 > k 1 ⇒ ∣ x n − a ∣ = ∣ x 2 k − 1 − a ∣ < ε ,若 n = 2 k ,   则 k > K ≥ k 2 ⇒ ∣ x 2 k − a ∣ < ε 。从而只要 n > N ,就有 ∣ x n − a ∣ < ε ,即 lim ⁡ x → ∞ x n = a 。 \begin{aligned} &\ \ 因为x_{2k-1}\rightarrow a\ (k\rightarrow \infty),所以\forall\ \varepsilon \gt 0,\exists\ k_1,当k\gt k_1时,有|x_{2k-1}-a|\lt \varepsilon;又因为x_{2k}\rightarrow a\ (k\rightarrow \infty),\\\\ &\ \ 所以\forall\ \varepsilon \gt 0,\exists\ k_2,当k\gt k_2时,有|x_{2k}-a|\lt \varepsilon。记K=max\{k_1, \ k_2\},取N=2K,则当n\gt N时,\\\\ &\ \ 若n=2k-1,2k-1>2K,则k\gt K+\frac{1}{2}\gt k_1 \Rightarrow |x_n-a|=|x_{2k-1}-a|\lt \varepsilon,若n=2k,\\\\ &\ \ 则k\gt K\ge k_2\Rightarrow |x_{2k}-a|\lt \varepsilon。从而只要n\gt N,就有|x_n-a|\lt \varepsilon,即\lim_{x\rightarrow \infty} x_n=a。\\\\ & \end{aligned}   因为x2k1a (k),所以 ε>0 k1,当k>k1时,有x2k1a<ε;又因为x2ka (k)  所以 ε>0 k2,当k>k2时,有x2ka<ε。记K=max{k1, k2},取N=2K,则当n>N时,  n=2k12k1>2K,则k>K+21>k1xna=x2k1a<ε,若n=2k  k>Kk2x2ka<ε。从而只要n>N,就有xna<ε,即xlimxn=a

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值