高等数学(第七版)同济大学 习题1-7 个人解答

本文详细解答了高等数学中关于无穷小的比较问题,包括高阶无穷小的判断,以及极限的计算。通过具体例题展示了如何运用无穷小的性质来解决实际问题,如比较2x-x²与x²-x³,(1-cos x)²与sin² x的高阶无穷小,以及在x趋近于特定值时无穷小的等价性。此外,还探讨了无穷小等价关系的自反性、对称性和传递性等基本性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高等数学(第七版)同济大学 习题1-7

 

1.   当 x → 0 时 , 2 x − x 2 与 x 2 − x 3 相 比 , 哪 一 个 是 高 阶 无 穷 小 ? \begin{aligned}&1. \ 当x \rightarrow 0时,2x-x^2与x^2-x^3相比,哪一个是高阶无穷小?&\end{aligned} 1. x02xx2x2x3
解:

   因 为 lim ⁡ x → 0 ( 2 x − x 2 ) = 0 , lim ⁡ x → 0 ( x 2 − x 3 ) = 0 , lim ⁡ x → 0 x 2 − x 3 2 x − x 2 = lim ⁡ x → 0 x − x 2 2 − x = 0 ,    所 以 当 x → 0 时 , x 2 − x 3 是 比 2 x − x 2 高 阶 的 无 穷 小 。 \begin{aligned} &\ \ 因为\lim_{x \rightarrow 0}(2x-x^2)=0,\lim_{x \rightarrow 0}(x^2-x^3)=0, \lim_{x \rightarrow 0}{\frac{x^2-x^3}{2x-x^2}}=\lim_{x \rightarrow 0}{\frac{x-x^2}{2-x}}=0,\\\\ &\ \ 所以当x \rightarrow 0时,x^2-x^3是比2x-x^2高阶的无穷小。 & \end{aligned}   x0lim(2xx2)=0x0lim(x2x3)=0x0lim2xx2x2x3=x0lim2xxx2=0  x0x2x32xx2


2.   当 x → 0 时 , ( 1 − c o s   x ) 2 与 s i n 2   x 相 比 , 哪 一 个 是 高 阶 无 穷 小 ? \begin{aligned}&2. \ 当x \rightarrow 0时,(1-cos\ x)^2与sin^2\ x相比,哪一个是高阶无穷小?&\end{aligned} 2. x0(1cos x)2sin2 x
解:

   因 为 lim ⁡ x → 0 ( 1 − c o s   x ) 2 = 0 , lim ⁡ x → 0 s i n 2   x = 0 , lim ⁡ x → 0 ( 1 − c o s   x ) 2 s i n 2   x = lim ⁡ x → 0 ( 1 2 x 2 ) 2 x 2 = lim ⁡ x → 0 1 4 x 2 = 0 ,    所 以 当 x → 0 时 , ( 1 − c o s   x ) 2 是 比 s i n 2   x 高 阶 的 无 穷 小 。 \begin{aligned} &\ \ 因为\lim_{x \rightarrow 0}(1-cos\ x)^2=0,\lim_{x \rightarrow 0}sin^2\ x=0,\lim_{x \rightarrow 0}{\frac{(1-cos\ x)^2}{sin^2\ x}}=\lim_{x \rightarrow 0}{\frac{\left(\frac{1}{2}x^2\right)^2}{x^2}}=\lim_{x \rightarrow 0}{\frac{1}{4}x^2}=0,\\\\ &\ \ 所以当x \rightarrow 0时,(1-cos\ x)^2是比sin^2\ x高阶的无穷小。 & \end{aligned}   x0lim(1cos x)2=0x0limsin2 x=0x0limsin2 x(1cos x)2=x0limx2(21x2)2=x0lim41x2=0  x0(1cos x)2sin2 x


3.   当 x → 1 时 , 无 穷 小 1 − x 和 ( 1 ) 1 − x 3 , ( 2 ) 1 2 ( 1 − x 2 ) 是 否 同 阶 , 是 否 等 价 ? \begin{aligned}&3. \ 当x \rightarrow 1时,无穷小1-x和(1)1-x^3,(2)\frac{1}{2}(1-x^2)是否同阶,是否等价?&\end{aligned} 3. x11x(1)1x3(2)21(1x2)
解:

   ( 1 )   因 为 lim ⁡ x → 1 1 − x 1 − x 3 = lim ⁡ x → 1 1 1 + x + x 2 = 1 3 , 所 以 当 x → 1 时 , 无 穷 小 1 − x 与 1 − x 3 同 阶 。    ( 2 )   因 为 lim ⁡ x → 1 1 − x 1 2 ( 1 − x 2 ) = lim ⁡ x → 1 2 1 + x = 1 , 所 以 当 x → 1 时 , 无 穷 小 1 − x 与 1 2 ( 1 − x 2 ) 等 价 。 \begin{aligned} &\ \ (1)\ 因为\lim_{x \rightarrow 1}\frac{1-x}{1-x^3}=\lim_{x \rightarrow 1}\frac{1}{1+x+x^2}=\frac{1}{3},所以当x \rightarrow 1时,无穷小1-x与1-x^3同阶。\\\\ &\ \ (2)\ 因为\lim_{x \rightarrow 1}\frac{1-x}{\frac{1}{2}(1-x^2)}=\lim_{x \rightarrow 1}\frac{2}{1+x}=1,所以当x \rightarrow 1时,无穷小1-x与\frac{1}{2}(1-x^2)等价。 & \end{aligned}   (1) x1lim1x31x=x1lim1+x+x21=31x11x1x3  (2) x1lim21(1x2)1x=x1lim1+x2=1x11x21(1x2)


4.   证 明 : 当 x → 0 时 , 有 \begin{aligned}&4. \ 证明:当x \rightarrow 0时,有&\end{aligned} 4. x0

   ( 1 )    a r c t a n   x ∼ x ;                              ( 2 )    s e c   x − 1 ∼ x 2 2 \begin{aligned} &\ \ (1)\ \ arctan\ x \sim x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ sec\ x-1 \sim \frac{x^2}{2} & \end{aligned}   (1)  arctan xx                            (2)  sec x12x2

解:

   ( 1 )   令 x = t a n   t , t = a r c t a n   x , 当 x → 0 时 , t → 0 。 因 为 lim ⁡ x → 0 a r c t a n   x x = lim ⁡ t → 0 t t a n   t = 1 ,          所 以 当 x → 0 时 , a r c t a n   x ∼ x 。    ( 2 )   因 为 lim ⁡ x → 0 s e c   x − 1 x 2 2 = lim ⁡ x → 0 1 − c o s   x c o s   x 1 2 x 2 = lim ⁡ x → 0 1 c o s   x = 1 ,          所 以 当 x → 0 时 , s e c   x − 1 ∼ x 2 2 。 \begin{aligned} &\ \ (1)\ 令x=tan\ t,t=arctan\ x,当x \rightarrow 0时,t \rightarrow 0。因为\lim_{x \rightarrow 0}\frac{arctan\ x}{x}=\lim_{t \rightarrow 0}\frac{t}{tan\ t}=1,\\\\ &\ \ \ \ \ \ \ \ 所以当x \rightarrow 0时,arctan\ x \sim x。\\\\ &\ \ (2)\ 因为\lim_{x \rightarrow 0}\frac{sec\ x-1}{\frac{x^2}{2}}=\lim_{x \rightarrow 0}\frac{\frac{1-cos\ x}{cos\ x}}{\frac{1}{2}x^2}=\lim_{x \rightarrow 0}\frac{1}{cos\ x}=1,\\\\ &\ \ \ \ \ \ \ \ 所以当x \rightarrow 0时,sec\ x -1 \sim \frac{x^2}{2}。 & \end{aligned}   (1) x=tan tt=arctan xx0t0x0limxarctan x=t0limtan tt=1        x0arctan xx  (2) x0lim2x2sec x1=x0lim21x2cos x1cos x=x0limcos x1=1        x0sec x12x2


5.   利 用 等 价 无 穷 小 的 性 质 , 求 下 列 极 限 : \begin{aligned}&5. \ 利用等价无穷小的性质,求下列极限:&\end{aligned} 5. 

   ( 1 )    lim ⁡ x → 0 t a n   3 x 2 x ;                              ( 2 )    lim ⁡ x → 0 s i n ( x n ) ( s i n   x ) m   ( n , m 为 正 整 数 ) ;    ( 3 )    lim ⁡ x → 0 t a n   x − s i n   x s i n 3   x ;                  ( 4 )    lim ⁡ x → 0 s i n   x − t a n   x ( 1 + x 2 3 − 1 ) ( 1 + s i n   x − 1 ) \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow 0}\frac{tan\ 3x}{2x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{x \rightarrow 0}\frac{sin(x^n)}{(sin\ x)^m}\ (n,m为正整数);\\\\ &\ \ (3)\ \ \lim_{x \rightarrow 0}\frac{tan\ x-sin\ x}{sin^3\ x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}\frac{sin\ x-tan\ x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+sin\ x}-1)} & \end{aligned}   (1)  x0lim2xtan 3x                            (2)  x0lim(sin x)msin(xn) (nm)  (3)  x0limsin3 xtan xsin x                (4)  x0lim(31+x2 1)(1+sin x 1)sin xtan x

解:

   ( 1 )   lim ⁡ x → 0 t a n   3 x 2 x = lim ⁡ x → 0 s i n   3 x 2 c o s   3 x ⋅ x = lim ⁡ x → 0 ( 3 2 ⋅ 1 c o s   3 x ⋅ s i n   3 x 3 x ) = 3 2    ( 2 )   lim ⁡ x → 0 s i n ( x n ) ( s i n   x ) m = lim ⁡ x → 0 x n x m = { 0 , n > m , 1 , n = m , ∞ , n < m .    ( 3 )   lim ⁡ x → 0 t a n   x − s i n   x s i n 3   x = lim ⁡ x → 0 s i n   x − s i n   x ⋅ c o s   x c o s   x ⋅ s i n 3   x = lim ⁡ x → 0 1 − c o s x c o s   x ⋅ s i n 2   x = lim ⁡ x → 0 1 2 c o s   x ⋅ s i n 2   x x 2 = 1 2    ( 4 )   lim ⁡ x → 0 s i n   x − t a n   x ( 1 + x 2 3 − 1 ) ( 1 + s i n   x − 1 ) = lim ⁡ x → 0 s i n   x ( 1 − s e c   x ) 1 3 x 2 ⋅ 1 2 s i n   x = lim ⁡ x → 0 − 1 2 x 2 1 6 x 2 = − 3 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow 0}\frac{tan\ 3x}{2x}=\lim_{x \rightarrow 0}\frac{sin\ 3x}{2cos\ 3x \cdot x}=\lim_{x \rightarrow 0}\left(\frac{3}{2} \cdot \frac{1}{cos\ 3x} \cdot \frac{sin\ 3x}{3x}\right)=\frac{3}{2}\\\\ &\ \ (2)\ \lim_{x \rightarrow 0}\frac{sin(x^n)}{(sin\ x)^m}=\lim_{x \rightarrow 0}\frac{x^n}{x^m}=\begin{cases}0,n \gt m,\\\\ 1,n =m,\\\\ \infty,n \lt m.\end{cases}\\\\ &\ \ (3)\ \lim_{x \rightarrow 0}\frac{tan\ x-sin\ x}{sin^3\ x}=\lim_{x \rightarrow 0}\frac{sin\ x-sin\ x \cdot cos\ x}{cos\ x \cdot sin^3\ x}=\lim_{x \rightarrow 0}\frac{1-cosx}{cos\ x \cdot sin^2\ x}=\lim_{x \rightarrow 0}\frac{1}{2cos\ x \cdot \frac{sin^2\ x}{x^2}}=\frac{1}{2}\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}\frac{sin\ x-tan\ x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+sin\ x}-1)}=\lim_{x \rightarrow 0}\frac{sin\ x(1-sec\ x)}{\frac{1}{3}x^2 \cdot \frac{1}{2}sin\ x}=\lim_{x \rightarrow 0}\frac{-\frac{1}{2}x^2}{\frac{1}{6}x^2}=-3 & \end{aligned}   (1) x0lim2xtan 3x=x0lim2cos 3xxsin 3x=x0lim(23cos 3x13xsin 3x)=23  (2) x0lim(sin x)msin(xn)=x0limxmxn=0n>m1n=mn<m.  (3) x0limsin3 xtan xsin x=x0limcos xsin3 xsin xsin xcos x=x0limcos xsin2 x1cosx=x0lim2cos xx2sin2 x1=21  (4) x0lim(31+x2 1)(1+sin x 1)sin xtan x=x0lim31x221sin xsin x(1sec x)=x0lim61x221x2=3


6.   证 明 无 穷 小 的 等 价 关 系 具 有 下 列 性 质 : \begin{aligned}&6. \ 证明无穷小的等价关系具有下列性质:&\end{aligned} 6. 

   ( 1 )    α ∼ α ( 自 反 性 ) ;                         ( 2 )    若 α ∼ β , 则 β ∼ α ( 对 称 性 ) ;    ( 3 )    若 α ∼ β , β ∼ γ , 则 α ∼ γ ( 传 递 性 ) \begin{aligned} &\ \ (1)\ \ \alpha \sim \alpha(自反性);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ 若\alpha \sim \beta,则\beta \sim \alpha(对称性);\\\\ &\ \ (3)\ \ 若\alpha \sim \beta,\beta \sim \gamma,则\alpha \sim \gamma(传递性) & \end{aligned}   (1)  αα                       (2)  αββα  (3)  αββγαγ

解:

   ( 1 )   因 为 lim ⁡ α α = 1 , 所 以 α ∼ α ;    ( 2 )   因 为 α ∼ β , 即 lim ⁡ α β = 1 , 所 以 lim ⁡ β α = 1 , 即 β ∼ α ;    ( 3 )   因 为 α ∼ β , β ∼ γ , 即 lim ⁡ α β = 1 , lim ⁡ β γ = 1 , 所 以 lim ⁡ α γ = lim ⁡ ( α β ⋅ β γ ) = lim ⁡ α β ⋅ lim ⁡ β γ = 1 , 即 α ∼ γ \begin{aligned} &\ \ (1)\ 因为\lim{\frac{\alpha}{\alpha}}=1,所以\alpha \sim \alpha;\\\\ &\ \ (2)\ 因为\alpha \sim \beta,即\lim{\frac{\alpha}{\beta}}=1,所以\lim{\frac{\beta}{\alpha}}=1,即\beta \sim \alpha;\\\\ &\ \ (3)\ 因为\alpha \sim \beta,\beta \sim \gamma,即\lim{\frac{\alpha}{\beta}}=1,\lim{\frac{\beta}{\gamma}}=1,所以\lim{\frac{\alpha}{\gamma}}=\lim\left(\frac{\alpha}{\beta}\cdot \frac{\beta}{\gamma}\right)=\lim{\frac{\alpha}{\beta}} \cdot \lim{\frac{\beta}{\gamma}}=1,即\alpha \sim \gamma & \end{aligned}   (1) limαα=1αα  (2) αβlimβα=1limαβ=1βα  (3) αββγlimβα=1limγβ=1limγα=lim(βαγβ)=limβαlimγβ=1αγ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值