高等数学(第七版)同济大学 习题1-7
1. 当 x → 0 时 , 2 x − x 2 与 x 2 − x 3 相 比 , 哪 一 个 是 高 阶 无 穷 小 ? \begin{aligned}&1. \ 当x \rightarrow 0时,2x-x^2与x^2-x^3相比,哪一个是高阶无穷小?&\end{aligned} 1. 当x→0时,2x−x2与x2−x3相比,哪一个是高阶无穷小?
解:
因 为 lim x → 0 ( 2 x − x 2 ) = 0 , lim x → 0 ( x 2 − x 3 ) = 0 , lim x → 0 x 2 − x 3 2 x − x 2 = lim x → 0 x − x 2 2 − x = 0 , 所 以 当 x → 0 时 , x 2 − x 3 是 比 2 x − x 2 高 阶 的 无 穷 小 。 \begin{aligned} &\ \ 因为\lim_{x \rightarrow 0}(2x-x^2)=0,\lim_{x \rightarrow 0}(x^2-x^3)=0, \lim_{x \rightarrow 0}{\frac{x^2-x^3}{2x-x^2}}=\lim_{x \rightarrow 0}{\frac{x-x^2}{2-x}}=0,\\\\ &\ \ 所以当x \rightarrow 0时,x^2-x^3是比2x-x^2高阶的无穷小。 & \end{aligned} 因为x→0lim(2x−x2)=0,x→0lim(x2−x3)=0,x→0lim2x−x2x2−x3=x→0lim2−xx−x2=0, 所以当x→0时,x2−x3是比2x−x2高阶的无穷小。
2. 当 x → 0 时 , ( 1 − c o s x ) 2 与 s i n 2 x 相 比 , 哪 一 个 是 高 阶 无 穷 小 ? \begin{aligned}&2. \ 当x \rightarrow 0时,(1-cos\ x)^2与sin^2\ x相比,哪一个是高阶无穷小?&\end{aligned} 2. 当x→0时,(1−cos x)2与sin2 x相比,哪一个是高阶无穷小?
解:
因 为 lim x → 0 ( 1 − c o s x ) 2 = 0 , lim x → 0 s i n 2 x = 0 , lim x → 0 ( 1 − c o s x ) 2 s i n 2 x = lim x → 0 ( 1 2 x 2 ) 2 x 2 = lim x → 0 1 4 x 2 = 0 , 所 以 当 x → 0 时 , ( 1 − c o s x ) 2 是 比 s i n 2 x 高 阶 的 无 穷 小 。 \begin{aligned} &\ \ 因为\lim_{x \rightarrow 0}(1-cos\ x)^2=0,\lim_{x \rightarrow 0}sin^2\ x=0,\lim_{x \rightarrow 0}{\frac{(1-cos\ x)^2}{sin^2\ x}}=\lim_{x \rightarrow 0}{\frac{\left(\frac{1}{2}x^2\right)^2}{x^2}}=\lim_{x \rightarrow 0}{\frac{1}{4}x^2}=0,\\\\ &\ \ 所以当x \rightarrow 0时,(1-cos\ x)^2是比sin^2\ x高阶的无穷小。 & \end{aligned} 因为x→0lim(1−cos x)2=0,x→0limsin2 x=0,x→0limsin2 x(1−cos x)2=x→0limx2(21x2)2=x→0lim41x2=0, 所以当x→0时,(1−cos x)2是比sin2 x高阶的无穷小。
3. 当 x → 1 时 , 无 穷 小 1 − x 和 ( 1 ) 1 − x 3 , ( 2 ) 1 2 ( 1 − x 2 ) 是 否 同 阶 , 是 否 等 价 ? \begin{aligned}&3. \ 当x \rightarrow 1时,无穷小1-x和(1)1-x^3,(2)\frac{1}{2}(1-x^2)是否同阶,是否等价?&\end{aligned} 3. 当x→1时,无穷小1−x和(1)1−x3,(2)21(1−x2)是否同阶,是否等价?
解:
( 1 ) 因 为 lim x → 1 1 − x 1 − x 3 = lim x → 1 1 1 + x + x 2 = 1 3 , 所 以 当 x → 1 时 , 无 穷 小 1 − x 与 1 − x 3 同 阶 。 ( 2 ) 因 为 lim x → 1 1 − x 1 2 ( 1 − x 2 ) = lim x → 1 2 1 + x = 1 , 所 以 当 x → 1 时 , 无 穷 小 1 − x 与 1 2 ( 1 − x 2 ) 等 价 。 \begin{aligned} &\ \ (1)\ 因为\lim_{x \rightarrow 1}\frac{1-x}{1-x^3}=\lim_{x \rightarrow 1}\frac{1}{1+x+x^2}=\frac{1}{3},所以当x \rightarrow 1时,无穷小1-x与1-x^3同阶。\\\\ &\ \ (2)\ 因为\lim_{x \rightarrow 1}\frac{1-x}{\frac{1}{2}(1-x^2)}=\lim_{x \rightarrow 1}\frac{2}{1+x}=1,所以当x \rightarrow 1时,无穷小1-x与\frac{1}{2}(1-x^2)等价。 & \end{aligned} (1) 因为x→1lim1−x31−x=x→1lim1+x+x21=31,所以当x→1时,无穷小1−x与1−x3同阶。 (2) 因为x→1lim21(1−x2)1−x=x→1lim1+x2=1,所以当x→1时,无穷小1−x与21(1−x2)等价。
4. 证 明 : 当 x → 0 时 , 有 \begin{aligned}&4. \ 证明:当x \rightarrow 0时,有&\end{aligned} 4. 证明:当x→0时,有
( 1 ) a r c t a n x ∼ x ; ( 2 ) s e c x − 1 ∼ x 2 2 \begin{aligned} &\ \ (1)\ \ arctan\ x \sim x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ sec\ x-1 \sim \frac{x^2}{2} & \end{aligned} (1) arctan x∼x; (2) sec x−1∼2x2
解:
( 1 ) 令 x = t a n t , t = a r c t a n x , 当 x → 0 时 , t → 0 。 因 为 lim x → 0 a r c t a n x x = lim t → 0 t t a n t = 1 , 所 以 当 x → 0 时 , a r c t a n x ∼ x 。 ( 2 ) 因 为 lim x → 0 s e c x − 1 x 2 2 = lim x → 0 1 − c o s x c o s x 1 2 x 2 = lim x → 0 1 c o s x = 1 , 所 以 当 x → 0 时 , s e c x − 1 ∼ x 2 2 。 \begin{aligned} &\ \ (1)\ 令x=tan\ t,t=arctan\ x,当x \rightarrow 0时,t \rightarrow 0。因为\lim_{x \rightarrow 0}\frac{arctan\ x}{x}=\lim_{t \rightarrow 0}\frac{t}{tan\ t}=1,\\\\ &\ \ \ \ \ \ \ \ 所以当x \rightarrow 0时,arctan\ x \sim x。\\\\ &\ \ (2)\ 因为\lim_{x \rightarrow 0}\frac{sec\ x-1}{\frac{x^2}{2}}=\lim_{x \rightarrow 0}\frac{\frac{1-cos\ x}{cos\ x}}{\frac{1}{2}x^2}=\lim_{x \rightarrow 0}\frac{1}{cos\ x}=1,\\\\ &\ \ \ \ \ \ \ \ 所以当x \rightarrow 0时,sec\ x -1 \sim \frac{x^2}{2}。 & \end{aligned} (1) 令x=tan t,t=arctan x,当x→0时,t→0。因为x→0limxarctan x=t→0limtan tt=1, 所以当x→0时,arctan x∼x。 (2) 因为x→0lim2x2sec x−1=x→0lim21x2cos x1−cos x=x→0limcos x1=1, 所以当x→0时,sec x−1∼2x2。
5. 利 用 等 价 无 穷 小 的 性 质 , 求 下 列 极 限 : \begin{aligned}&5. \ 利用等价无穷小的性质,求下列极限:&\end{aligned} 5. 利用等价无穷小的性质,求下列极限:
( 1 ) lim x → 0 t a n 3 x 2 x ; ( 2 ) lim x → 0 s i n ( x n ) ( s i n x ) m ( n , m 为 正 整 数 ) ; ( 3 ) lim x → 0 t a n x − s i n x s i n 3 x ; ( 4 ) lim x → 0 s i n x − t a n x ( 1 + x 2 3 − 1 ) ( 1 + s i n x − 1 ) \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow 0}\frac{tan\ 3x}{2x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{x \rightarrow 0}\frac{sin(x^n)}{(sin\ x)^m}\ (n,m为正整数);\\\\ &\ \ (3)\ \ \lim_{x \rightarrow 0}\frac{tan\ x-sin\ x}{sin^3\ x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}\frac{sin\ x-tan\ x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+sin\ x}-1)} & \end{aligned} (1) x→0lim2xtan 3x; (2) x→0lim(sin x)msin(xn) (n,m为正整数); (3) x→0limsin3 xtan x−sin x; (4) x→0lim(31+x2−1)(1+sin x−1)sin x−tan x
解:
( 1 ) lim x → 0 t a n 3 x 2 x = lim x → 0 s i n 3 x 2 c o s 3 x ⋅ x = lim x → 0 ( 3 2 ⋅ 1 c o s 3 x ⋅ s i n 3 x 3 x ) = 3 2 ( 2 ) lim x → 0 s i n ( x n ) ( s i n x ) m = lim x → 0 x n x m = { 0 , n > m , 1 , n = m , ∞ , n < m . ( 3 ) lim x → 0 t a n x − s i n x s i n 3 x = lim x → 0 s i n x − s i n x ⋅ c o s x c o s x ⋅ s i n 3 x = lim x → 0 1 − c o s x c o s x ⋅ s i n 2 x = lim x → 0 1 2 c o s x ⋅ s i n 2 x x 2 = 1 2 ( 4 ) lim x → 0 s i n x − t a n x ( 1 + x 2 3 − 1 ) ( 1 + s i n x − 1 ) = lim x → 0 s i n x ( 1 − s e c x ) 1 3 x 2 ⋅ 1 2 s i n x = lim x → 0 − 1 2 x 2 1 6 x 2 = − 3 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow 0}\frac{tan\ 3x}{2x}=\lim_{x \rightarrow 0}\frac{sin\ 3x}{2cos\ 3x \cdot x}=\lim_{x \rightarrow 0}\left(\frac{3}{2} \cdot \frac{1}{cos\ 3x} \cdot \frac{sin\ 3x}{3x}\right)=\frac{3}{2}\\\\ &\ \ (2)\ \lim_{x \rightarrow 0}\frac{sin(x^n)}{(sin\ x)^m}=\lim_{x \rightarrow 0}\frac{x^n}{x^m}=\begin{cases}0,n \gt m,\\\\ 1,n =m,\\\\ \infty,n \lt m.\end{cases}\\\\ &\ \ (3)\ \lim_{x \rightarrow 0}\frac{tan\ x-sin\ x}{sin^3\ x}=\lim_{x \rightarrow 0}\frac{sin\ x-sin\ x \cdot cos\ x}{cos\ x \cdot sin^3\ x}=\lim_{x \rightarrow 0}\frac{1-cosx}{cos\ x \cdot sin^2\ x}=\lim_{x \rightarrow 0}\frac{1}{2cos\ x \cdot \frac{sin^2\ x}{x^2}}=\frac{1}{2}\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}\frac{sin\ x-tan\ x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+sin\ x}-1)}=\lim_{x \rightarrow 0}\frac{sin\ x(1-sec\ x)}{\frac{1}{3}x^2 \cdot \frac{1}{2}sin\ x}=\lim_{x \rightarrow 0}\frac{-\frac{1}{2}x^2}{\frac{1}{6}x^2}=-3 & \end{aligned} (1) x→0lim2xtan 3x=x→0lim2cos 3x⋅xsin 3x=x→0lim(23⋅cos 3x1⋅3xsin 3x)=23 (2) x→0lim(sin x)msin(xn)=x→0limxmxn=⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧0,n>m,1,n=m,∞,n<m. (3) x→0limsin3 xtan x−sin x=x→0limcos x⋅sin3 xsin x−sin x⋅cos x=x→0limcos x⋅sin2 x1−cosx=x→0lim2cos x⋅x2sin2 x1=21 (4) x→0lim(31+x2−1)(1+sin x−1)sin x−tan x=x→0lim31x2⋅21sin xsin x(1−sec x)=x→0lim61x2−21x2=−3
6. 证 明 无 穷 小 的 等 价 关 系 具 有 下 列 性 质 : \begin{aligned}&6. \ 证明无穷小的等价关系具有下列性质:&\end{aligned} 6. 证明无穷小的等价关系具有下列性质:
( 1 ) α ∼ α ( 自 反 性 ) ; ( 2 ) 若 α ∼ β , 则 β ∼ α ( 对 称 性 ) ; ( 3 ) 若 α ∼ β , β ∼ γ , 则 α ∼ γ ( 传 递 性 ) \begin{aligned} &\ \ (1)\ \ \alpha \sim \alpha(自反性);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ 若\alpha \sim \beta,则\beta \sim \alpha(对称性);\\\\ &\ \ (3)\ \ 若\alpha \sim \beta,\beta \sim \gamma,则\alpha \sim \gamma(传递性) & \end{aligned} (1) α∼α(自反性); (2) 若α∼β,则β∼α(对称性); (3) 若α∼β,β∼γ,则α∼γ(传递性)
解:
( 1 ) 因 为 lim α α = 1 , 所 以 α ∼ α ; ( 2 ) 因 为 α ∼ β , 即 lim α β = 1 , 所 以 lim β α = 1 , 即 β ∼ α ; ( 3 ) 因 为 α ∼ β , β ∼ γ , 即 lim α β = 1 , lim β γ = 1 , 所 以 lim α γ = lim ( α β ⋅ β γ ) = lim α β ⋅ lim β γ = 1 , 即 α ∼ γ \begin{aligned} &\ \ (1)\ 因为\lim{\frac{\alpha}{\alpha}}=1,所以\alpha \sim \alpha;\\\\ &\ \ (2)\ 因为\alpha \sim \beta,即\lim{\frac{\alpha}{\beta}}=1,所以\lim{\frac{\beta}{\alpha}}=1,即\beta \sim \alpha;\\\\ &\ \ (3)\ 因为\alpha \sim \beta,\beta \sim \gamma,即\lim{\frac{\alpha}{\beta}}=1,\lim{\frac{\beta}{\gamma}}=1,所以\lim{\frac{\alpha}{\gamma}}=\lim\left(\frac{\alpha}{\beta}\cdot \frac{\beta}{\gamma}\right)=\lim{\frac{\alpha}{\beta}} \cdot \lim{\frac{\beta}{\gamma}}=1,即\alpha \sim \gamma & \end{aligned} (1) 因为limαα=1,所以α∼α; (2) 因为α∼β,即limβα=1,所以limαβ=1,即β∼α; (3) 因为α∼β,β∼γ,即limβα=1,limγβ=1,所以limγα=lim(βα⋅γβ)=limβα⋅limγβ=1,即α∼γ