高等数学(第七版)同济大学 习题1-9 个人解答

本文详细解答了高等数学中关于函数连续性、极限计算以及连续性证明的问题,包括函数的连续区间判断、极限计算技巧以及利用极限性质证明函数连续性的方法。此外,还探讨了极限存在的条件及其在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高等数学(第七版)同济大学 习题1-9

 

1.  求函数 f ( x ) = x 3 + 3 x 2 − x − 3 x 2 + x − 6 的连续区间,并求极限 lim ⁡ x → 0 f ( x ) , lim ⁡ x → − 3 f ( x ) 及 lim ⁡ x → 2 f ( x ) \begin{aligned}&1. \ 求函数f(x)=\frac{x^3+3x^2-x-3}{x^2+x-6}的连续区间,并求极限\lim_{x \rightarrow 0}f(x),\lim_{x \rightarrow -3}f(x)及\lim_{x \rightarrow 2}f(x)&\end{aligned} 1. 求函数f(x)=x2+x6x3+3x2x3的连续区间,并求极限x0limf(x)x3limf(x)x2limf(x)
解:

  当 x = − 3 , x = 2 时, f ( x ) 无意义,所以这两个点为间断点,除此之外,函数都连续,   连续区间为 ( − ∞ ,   − 3 ) , ( − 3 ,   2 ) , ( 2 ,   + ∞ )    f ( x ) = x 3 + 3 x 2 − x − 3 x 2 + x − 6 = ( x + 3 ) ( x 2 − 1 ) ( x + 3 ) ( x − 2 ) = x 2 − 1 x − 2    lim ⁡ x → 0 f ( x ) = lim ⁡ x → 0 x 2 − 1 x − 2 = 1 2    lim ⁡ x → − 3 f ( x ) = lim ⁡ x → − 3 x 2 − 1 x − 2 = − 8 5    lim ⁡ x → 2 f ( x ) = lim ⁡ x → 2 x 2 − 1 x − 2 ,而 lim ⁡ x → 2 x − 2 x 2 − 1 = 0 ,所以 lim ⁡ x → 2 f ( x ) = ∞ \begin{aligned} &\ \ 当x=-3,x=2时,f(x)无意义,所以这两个点为间断点,除此之外,函数都连续,\\\\ &\ \ 连续区间为(-\infty, \ -3),(-3, \ 2),(2, \ +\infty)\\\\ &\ \ f(x)=\frac{x^3+3x^2-x-3}{x^2+x-6}=\frac{(x+3)(x^2-1)}{(x+3)(x-2)}=\frac{x^2-1}{x-2}\\\\ &\ \ \lim_{x \rightarrow 0}f(x)=\lim_{x \rightarrow 0}\frac{x^2-1}{x-2}=\frac{1}{2}\\\\ &\ \ \lim_{x \rightarrow -3}f(x)=\lim_{x \rightarrow -3}\frac{x^2-1}{x-2}=-\frac{8}{5}\\\\ &\ \ \lim_{x \rightarrow 2}f(x)=\lim_{x \rightarrow 2}\frac{x^2-1}{x-2},而\lim_{x \rightarrow 2}\frac{x-2}{x^2-1}=0,所以\lim_{x \rightarrow 2}f(x)=\infty & \end{aligned}   x=3x=2时,f(x)无意义,所以这两个点为间断点,除此之外,函数都连续,  连续区间为(, 3)(3, 2)(2, +)  f(x)=x2+x6x3+3x2x3=(x+3)(x2)(x+3)(x21)=x2x21  x0limf(x)=x0limx2x21=21  x3limf(x)=x3limx2x21=58  x2limf(x)=x2limx2x21,而x2limx21x2=0,所以x2limf(x)=


2.  设函数 f ( x ) 与 g ( x ) 在点 x 0 连续,证明函数 φ ( x ) = m a x { f ( x ) , g ( x ) } , ψ ( x ) = m i n { f ( x ) , g ( x ) }     在点 x 0 也连续。 \begin{aligned}&2. \ 设函数f(x)与g(x)在点x_0连续,证明函数\varphi(x)=max\{f(x),g(x)\},\psi(x)=min\{f(x),g(x)\}\\\\&\ \ \ \ 在点x_0也连续。&\end{aligned} 2. 设函数f(x)g(x)在点x0连续,证明函数φ(x)=max{f(x)g(x)}ψ(x)=min{f(x)g(x)}    在点x0也连续。
解:

   φ ( x ) = m a x { f ( x ) , g ( x ) } = 1 2 [ f ( x ) + g ( x ) + ∣ f ( x ) − g ( x ) ∣ ] ,    ψ ( x ) = m i n { f ( x ) , g ( x ) } = 1 2 [ f ( x ) + g ( x ) − ∣ f ( x ) − g ( x ) ∣ ] 。   因 f ( x ) 在点 x 0 连续,则 ∣ f ( x ) ∣ 在点 x 0 也连续;由于连续函数的和、差仍连续,所以 φ ( x ) 、 ψ ( x ) 在点 x 0 也连续 \begin{aligned} &\ \ \varphi(x)=max\{f(x),g(x)\}=\frac{1}{2}[f(x)+g(x)+|f(x)-g(x)|],\\\\ &\ \ \psi(x)=min\{f(x),g(x)\}=\frac{1}{2}[f(x)+g(x)-|f(x)-g(x)|]。\\\\ &\ \ 因f(x)在点x_0连续,则|f(x)|在点x_0也连续;由于连续函数的和、差仍连续,所以\varphi(x)、\psi(x)在点x_0也连续 & \end{aligned}   φ(x)=max{f(x)g(x)}=21[f(x)+g(x)+f(x)g(x)]  ψ(x)=min{f(x)g(x)}=21[f(x)+g(x)f(x)g(x)]  f(x)在点x0连续,则f(x)在点x0也连续;由于连续函数的和、差仍连续,所以φ(x)ψ(x)在点x0也连续


3.  求下列极限: \begin{aligned}&3. \ 求下列极限:&\end{aligned} 3. 求下列极限:

   ( 1 )    lim ⁡ x → 0 x 2 − 2 x + 5 ;                             ( 2 )    lim ⁡ α → π 4 ( s i n   2 α ) 3 ;    ( 3 )    lim ⁡ x → π 6 l n ( 2 c o s   2 x ) ;                                ( 4 )    lim ⁡ x → 0 x + 1 − 1 x ;    ( 5 )    lim ⁡ x → 1 5 x − 4 − x x − 1 ;                           ( 6 )    lim ⁡ x → α s i n   x − s i n   α x − α ;    ( 7 )    lim ⁡ x → + ∞ ( x 2 + x − x 2 − x ) ;            ( 8 )    lim ⁡ x → 0 ( 1 − 1 2 x 2 ) 2 3 − 1 x   l n ( 1 + x ) \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow 0}\sqrt{x^2-2x+5};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{\alpha \rightarrow \frac{\pi}{4}}(sin\ 2\alpha)^3;\\\\ &\ \ (3)\ \ \lim_{x \rightarrow \frac{\pi}{6}}ln(2cos\ 2x);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{x};\\\\ &\ \ (5)\ \ \lim_{x \rightarrow 1}\frac{\sqrt{5x-4}-\sqrt{x}}{x-1};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \lim_{x \rightarrow \alpha}\frac{sin\ x-sin\ \alpha}{x-\alpha};\\\\ &\ \ (7)\ \ \lim_{x \rightarrow +\infty}(\sqrt{x^2+x}-\sqrt{x^2-x});\ \ \ \ \ \ \ \ \ \ \ (8)\ \ \lim_{x \rightarrow 0}\frac{\left(1-\frac{1}{2}x^2\right)^{\frac{2}{3}}-1}{x\ ln(1+x)} & \end{aligned}   (1)  x0limx22x+5                             (2)  α4πlim(sin 2α)3  (3)  x6πlimln(2cos 2x)                               (4)  x0limxx+1 1  (5)  x1limx15x4 x                           (6)  xαlimxαsin xsin α  (7)  x+lim(x2+x x2x )           (8)  x0limx ln(1+x)(121x2)321

解:

   ( 1 )   lim ⁡ x → 0 x 2 − 2 x + 5 = lim ⁡ x → 0 ( x 2 − 2 x + 5 ) = 5    ( 2 )   lim ⁡ α → π 4 ( s i n   2 α ) 3 = ( lim ⁡ α → π 4 s i n   2 α ) 3 = ( s i n   π 2 ) 3 = 1    ( 3 )   lim ⁡ x → π 6 l n ( 2 c o s   2 x ) = l n ( lim ⁡ x → π 6 2 c o s   2 x ) = l n ( 2 c o s   π 3 ) = l n 1 = 0    ( 4 )   lim ⁡ x → 0 x + 1 − 1 x = lim ⁡ x → 0 x + 1 − 1 ( x + 1 + 1 ) ( x + 1 − 1 ) = lim ⁡ x → 0 1 x + 1 + 1 = 1 2    ( 5 )   lim ⁡ x → 1 5 x − 4 − x x − 1 = lim ⁡ x → 1 ( 5 x − 4 − x ) ( 5 x − 4 + x ) ( x − 1 ) ( 5 x − 4 + x ) = lim ⁡ x → 1 ( 4 x − 4 ( x − 1 ) ( 5 x − 4 + x ) ) =          lim ⁡ x → 1 ( 4 5 x − 4 + x ) = 2    ( 6 )   lim ⁡ x → α s i n   x − s i n   α x − α = lim ⁡ x → α 2 s i n   x − α 2 c o s   x + α 2 x − α = lim ⁡ x → α s i n   x − α 2 x − α 2 ⋅ lim ⁡ x → α c o s   x + α 2 = c o s   α    ( 7 )   lim ⁡ x → + ∞ ( x 2 + x − x 2 − x ) = lim ⁡ x → + ∞ 2 x x 2 + x + x 2 − x = lim ⁡ x → + ∞ 2 1 + 1 x + 1 − 1 x = 1    ( 8 )   lim ⁡ x → 0 ( 1 − 1 2 x 2 ) 2 3 − 1 x   l n ( 1 + x ) = lim ⁡ x → 0 2 3 ⋅ ( − 1 2 x 2 ) x ⋅ x = − 1 3 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow 0}\sqrt{x^2-2x+5}=\sqrt{\lim_{x \rightarrow 0}(x^2-2x+5)}=\sqrt{5}\\\\ &\ \ (2)\ \lim_{\alpha \rightarrow \frac{\pi}{4}}(sin\ 2\alpha)^3=\left(\lim_{\alpha \rightarrow \frac{\pi}{4}}sin\ 2\alpha\right)^3=\left(sin\ \frac{\pi}{2}\right)^3=1\\\\ &\ \ (3)\ \lim_{x \rightarrow \frac{\pi}{6}}ln(2cos\ 2x)=ln\left(\lim_{x \rightarrow \frac{\pi}{6}}2cos\ 2x\right)=ln\left(2cos\ \frac{\pi}{3}\right)=ln1=0\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{x}=\lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{(\sqrt{x+1}+1)(\sqrt{x+1}-1)}=\lim_{x \rightarrow 0}\frac{1}{\sqrt{x+1}+1}=\frac{1}{2}\\\\ &\ \ (5)\ \lim_{x \rightarrow 1}\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}=\lim_{x \rightarrow 1}\frac{(\sqrt{5x-4}-\sqrt{x})(\sqrt{5x-4}+\sqrt{x})}{(x-1)(\sqrt{5x-4}+\sqrt{x})}=\lim_{x \rightarrow 1}\left(\frac{4x-4}{(x-1)(\sqrt{5x-4}+\sqrt{x})}\right)=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 1}\left(\frac{4}{\sqrt{5x-4}+\sqrt{x}}\right)=2\\\\ &\ \ (6)\ \lim_{x \rightarrow \alpha}\frac{sin\ x-sin\ \alpha}{x-\alpha}=\lim_{x \rightarrow \alpha}\frac{2sin\ \frac{x-\alpha}{2}cos\ \frac{x+\alpha}{2}}{x-\alpha}=\lim_{x \rightarrow \alpha}\frac{sin\ \frac{x-\alpha}{2}}{\frac{x-\alpha}{2}}\cdot \lim_{x \rightarrow \alpha}cos\ \frac{x+\alpha}{2}=cos\ \alpha\\\\ &\ \ (7)\ \lim_{x \rightarrow +\infty}(\sqrt{x^2+x}-\sqrt{x^2-x})=\lim_{x \rightarrow +\infty}\frac{2x}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\lim_{x \rightarrow +\infty}\frac{2}{\sqrt{1+\frac{1}{x}}+\sqrt{1-\frac{1}{x}}}=1\\\\ &\ \ (8)\ \lim_{x \rightarrow 0}\frac{\left(1-\frac{1}{2}x^2\right)^{\frac{2}{3}}-1}{x\ ln(1+x)}=\lim_{x \rightarrow 0}\frac{\frac{2}{3}\cdot \left(-\frac{1}{2}x^2\right)}{x\cdot x}=-\frac{1}{3} & \end{aligned}   (1) x0limx22x+5 =x0lim(x22x+5) =5   (2) α4πlim(sin 2α)3=(α4πlimsin 2α)3=(sin 2π)3=1  (3) x6πlimln(2cos 2x)=ln(x6πlim2cos 2x)=ln(2cos 3π)=ln1=0  (4) x0limxx+1 1=x0lim(x+1 +1)(x+1 1)x+1 1=x0limx+1 +11=21  (5) x1limx15x4 x =x1lim(x1)(5x4 +x )(5x4 x )(5x4 +x )=x1lim((x1)(5x4 +x )4x4)=        x1lim(5x4 +x 4)=2  (6) xαlimxαsin xsin α=xαlimxα2sin 2xαcos 2x+α=xαlim2xαsin 2xαxαlimcos 2x+α=cos α  (7) x+lim(x2+x x2x )=x+limx2+x +x2x 2x=x+lim1+x1 +1x1 2=1  (8) x0limx ln(1+x)(121x2)321=x0limxx32(21x2)=31


4.  求下列极限: \begin{aligned}&4. \ 求下列极限:&\end{aligned} 4. 求下列极限:

   ( 1 )    lim ⁡ x → ∞ e 1 x ;                                               ( 2 )    lim ⁡ x → 0 l n s i n   x x ;    ( 3 )    lim ⁡ x → ∞ ( 1 + 1 x ) x 2 ;                                ( 4 )    lim ⁡ x → 0 ( 1 + 3 t a n 2   x ) c o t 2   x ;    ( 5 )    lim ⁡ x → ∞ ( 3 + x 6 + x ) x − 1 2 ;                             ( 6 )    lim ⁡ x → 0 1 + t a n   x − 1 + s i n   x x 1 + s i n 2   x − x ;    ( 7 )    lim ⁡ x → e l n   x − 1 x − e ;                                      ( 8 )    lim ⁡ x → 0 e 3 x − e 2 x − e x + 1 ( 1 − x ) ( 1 + x ) 3 − 1 \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow \infty}e^{\frac{1}{x}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{x \rightarrow 0}ln\frac{sin\ x}{x};\\\\ &\ \ (3)\ \ \lim_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\frac{x}{2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}(1+3tan^2\ x)^{cot^2\ x};\\\\ &\ \ (5)\ \ \lim_{x \rightarrow \infty}\left(\frac{3+x}{6+x}\right)^{\frac{x-1}{2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \lim_{x \rightarrow 0}\frac{\sqrt{1+tan\ x}-\sqrt{1+sin\ x}}{x\sqrt{1+sin^2\ x}-x};\\\\ &\ \ (7)\ \ \lim_{x \rightarrow e}\frac{ln\ x-1}{x-e};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ \lim_{x \rightarrow 0}\frac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)}-1} & \end{aligned}   (1)  xlimex1                                              (2)  x0limlnxsin x  (3)  xlim(1+x1)2x                               (4)  x0lim(1+3tan2 x)cot2 x  (5)  xlim(6+x3+x)2x1                            (6)  x0limx1+sin2 x x1+tan x 1+sin x   (7)  xelimxeln x1                                     (8)  x0lim3(1x)(1+x) 1e3xe2xex+1

解:

   ( 1 )   lim ⁡ x → ∞ e 1 x = e lim ⁡ x → ∞ 1 x = e 0 = 1    ( 2 )   lim ⁡ x → 0 l n s i n   x x = l n ( lim ⁡ x → 0 s i n   x x ) = l n 1 = 0    ( 3 )   lim ⁡ x → ∞ ( 1 + 1 x ) x 2 = lim ⁡ x → ∞ [ ( 1 + 1 x ) x ] 1 2 = e 1 2 = e    ( 4 )   lim ⁡ x → 0 ( 1 + 3 t a n 2   x ) c o t 2   x = lim ⁡ x → 0 [ ( 1 + 3 t a n 2   x ) 1 3 c o t 2   x ] 3 = e 3    ( 5 )   lim ⁡ x → ∞ ( 3 + x 6 + x ) x − 1 2 = lim ⁡ x → ∞ [ ( 1 − 3 6 + x ) − 6 + x 3 ] − 3 2 ⋅ lim ⁡ x → ∞ ( 1 − 3 6 + x ) − 7 2 = e − 3 2    ( 6 )   lim ⁡ x → 0 1 + t a n   x − 1 + s i n   x x 1 + s i n 2   x − x = lim ⁡ x → 0 t a n   x − s i n   x x ( 1 + s i n 2   x − 1 ) ( 1 + t a n   x + 1 + s i n   x ) =          lim ⁡ x → 0 ( s i n   x x ⋅ s e c   x − 1 1 + s i n 2   x − 1 ⋅ 1 1 + t a n   x + 1 + s i n   x ) =          lim ⁡ x → 0 s i n   x x ⋅ lim ⁡ x → 0 1 2 x 2 1 2 s i n 2   x ⋅ lim ⁡ x → 0 1 1 + t a n   x + 1 + s i n   x = 1 2    ( 7 )  令 t = x − e ,则 x = t + e ,当 x → e 时, t → 0 , lim ⁡ x → e l n   x − 1 x − e = lim ⁡ t → 0 l n ( t + e ) − l n   e t = lim ⁡ t → 0 l n ( 1 + t e ) t = 1 e    ( 8 )   lim ⁡ x → 0 e 3 x − e 2 x − e x + 1 ( 1 − x ) ( 1 + x ) 3 − 1 = lim ⁡ x → 0 ( e 2 x − 1 ) ( e x − 1 ) ( 1 − x 2 ) 1 3 − 1 = lim ⁡ x → 0 2 x ⋅ x − 1 3 x 2 = − 6 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow \infty}e^{\frac{1}{x}}=e^{{\displaystyle \lim_{x \rightarrow \infty}\frac{1}{x}}}=e^0=1\\\\ &\ \ (2)\ \lim_{x \rightarrow 0}ln\frac{sin\ x}{x}=ln\left(\lim_{x \rightarrow 0}\frac{sin\ x}{x}\right)=ln1=0\\\\ &\ \ (3)\ \lim_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\frac{x}{2}}=\lim_{x \rightarrow \infty}\left[\left(1+\frac{1}{x}\right)^x\right]^{\frac{1}{2}}=e^{\frac{1}{2}}=\sqrt{e}\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}(1+3tan^2\ x)^{cot^2\ x}=\lim_{x \rightarrow 0}[(1+3tan^2\ x)^{\frac{1}{3}cot^2\ x}]^3=e^3\\\\ &\ \ (5)\ \lim_{x \rightarrow \infty}\left(\frac{3+x}{6+x}\right)^{\frac{x-1}{2}}=\lim_ {x \rightarrow \infty}\left[\left(1-\frac{3}{6+x}\right)^{-\frac{6+x}{3}}\right]^{-\frac{3}{2}}\cdot \lim_{x \rightarrow \infty}\left(1-\frac{3}{6+x}\right)^{-\frac{7}{2}}=e^{-\frac{3}{2}}\\\\ &\ \ (6)\ \lim_{x \rightarrow 0}\frac{\sqrt{1+tan\ x}-\sqrt{1+sin\ x}}{x\sqrt{1+sin^2\ x}-x}=\lim_{x \rightarrow 0}\frac{tan\ x-sin\ x}{x(\sqrt{1+sin^2\ x}-1)(\sqrt{1+tan\ x}+\sqrt{1+sin\ x})}=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 0}\left(\frac{sin\ x}{x}\cdot \frac{sec\ x-1}{\sqrt{1+sin^2\ x}-1}\cdot \frac{1}{\sqrt{1+tan\ x}+\sqrt{1+sin\ x}}\right)=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 0}\frac{sin\ x}{x}\cdot \lim_{x \rightarrow 0}\frac{\frac{1}{2}x^2}{\frac{1}{2}sin^2\ x}\cdot \lim_{x \rightarrow 0}\frac{1}{\sqrt{1+tan\ x}+\sqrt{1+sin\ x}}=\frac{1}{2}\\\\ &\ \ (7)\ 令t=x-e,则x=t+e,当x \rightarrow e时,t \rightarrow 0,\lim_{x \rightarrow e}\frac{ln\ x-1}{x-e}=\lim_{t \rightarrow 0}\frac{ln(t+e)-ln\ e}{t}=\lim_{t \rightarrow 0}\frac{ln\left(1+\frac{t}{e}\right)}{t}=\frac{1}{e}\\\\ &\ \ (8)\ \lim_{x \rightarrow 0}\frac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)}-1}=\lim_{x \rightarrow 0}\frac{(e^{2x}-1)(e^x-1)}{(1-x^2)^{\frac{1}{3}}-1}=\lim_{x \rightarrow 0}\frac{2x\cdot x}{-\frac{1}{3}x^2}=-6 & \end{aligned}   (1) xlimex1=exlimx1=e0=1  (2) x0limlnxsin x=ln(x0limxsin x)=ln1=0  (3) xlim(1+x1)2x=xlim[(1+x1)x]21=e21=e   (4) x0lim(1+3tan2 x)cot2 x=x0lim[(1+3tan2 x)31cot2 x]3=e3  (5) xlim(6+x3+x)2x1=xlim[(16+x3)36+x]23xlim(16+x3)27=e23  (6) x0limx1+sin2 x x1+tan x 1+sin x =x0limx(1+sin2 x 1)(1+tan x +1+sin x )tan xsin x=        x0lim(xsin x1+sin2 x 1sec x11+tan x +1+sin x 1)=        x0limxsin xx0lim21sin2 x21x2x0lim1+tan x +1+sin x 1=21  (7) t=xe,则x=t+e,当xe时,t0xelimxeln x1=t0limtln(t+e)ln e=t0limtln(1+et)=e1  (8) x0lim3(1x)(1+x) 1e3xe2xex+1=x0lim(1x2)311(e2x1)(ex1)=x0lim31x22xx=6


5.  设 f ( x ) 在 R 上连续,且 f ( x ) ≠ 0 , φ ( x ) 在 R 上有定义,且由间断点,则下列陈述中哪些是对的,      哪些是错的?如果是对的,试说明理由;如果是错的,试给出要给反例。 \begin{aligned}&5. \ 设f(x)在R上连续,且f(x) \neq 0,\varphi(x)在R上有定义,且由间断点,则下列陈述中哪些是对的,\\\\&\ \ \ \ \ 哪些是错的?如果是对的,试说明理由;如果是错的,试给出要给反例。&\end{aligned} 5. f(x)R上连续,且f(x)=0φ(x)R上有定义,且由间断点,则下列陈述中哪些是对的,     哪些是错的?如果是对的,试说明理由;如果是错的,试给出要给反例。

   ( 1 )    φ [ f ( x ) ] 必有间断点;                             ( 2 )    [ φ ( x ) ] 2 必有间断点;    ( 3 )    f [ φ ( x ) ] 未必有间断点;                         ( 4 )    φ ( x ) f ( x ) 必有间断点 \begin{aligned} &\ \ (1)\ \ \varphi[f(x)]必有间断点;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ [\varphi(x)]^2必有间断点;\\\\ &\ \ (3)\ \ f[\varphi(x)]未必有间断点;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \frac{\varphi(x)}{f(x)}必有间断点 & \end{aligned}   (1)  φ[f(x)]必有间断点;                            (2)  [φ(x)]2必有间断点;  (3)  f[φ(x)]未必有间断点;                        (4)  f(x)φ(x)必有间断点

解:

   ( 1 )  错的, φ ( x ) = s g n   x , f ( x ) = e x , φ [ f ( x ) ] ≡ 1 在 R 上连续    ( 2 )  错的, φ ( x ) = { 1 ,    x ∈ Q , − 1 , x ∈ R \ Q , [ φ ( x ) ] 2 ≡ 1 在 R 上连续    ( 3 )  对的, φ ( x ) = { 1 ,    x ∈ Q , − 1 , x ∈ R \ Q , f ( x ) = ∣ x ∣ + 1 , f [ φ ( x ) ] ≡ 2 在 R 上连续    ( 4 )  对的,如果 F ( x ) = φ ( x ) f ( x ) 在 R 上连续,则 φ ( x ) = F ( x ) ⋅ f ( x ) 也在 R 上连续,与已知矛盾 \begin{aligned} &\ \ (1)\ 错的,\varphi(x)=sgn\ x,f(x)=e^x,\varphi[f(x)] \equiv 1在R上连续\\\\ &\ \ (2)\ 错的,\varphi(x)=\begin{cases}1,\ \ \ x \in Q,\\\\-1,x \in R\verb|\|Q,\end{cases}[\varphi(x)]^2 \equiv 1在R上连续\\\\ &\ \ (3)\ 对的,\varphi(x)=\begin{cases}1,\ \ \ x \in Q,\\\\-1,x \in R\verb|\|Q,\end{cases}f(x)=|x|+1,f[\varphi(x)] \equiv 2在R上连续\\\\ &\ \ (4)\ 对的,如果F(x)=\frac{\varphi(x)}{f(x)}在R上连续,则\varphi(x)=F(x)\cdot f(x)也在R上连续,与已知矛盾 & \end{aligned}   (1) 错的,φ(x)=sgn xf(x)=exφ[f(x)]1R上连续  (2) 错的,φ(x)= 1   xQ1xR\Q[φ(x)]21R上连续  (3) 对的,φ(x)= 1   xQ1xR\Qf(x)=x+1f[φ(x)]2R上连续  (4) 对的,如果F(x)=f(x)φ(x)R上连续,则φ(x)=F(x)f(x)也在R上连续,与已知矛盾


6.  设函数 f ( x ) = { e x ,      x < 0 , α + x , x ≥ 0 应当怎样选择数 α ,才能使得 f ( x ) 成为在 ( − ∞ ,  + ∞ ) 内的连续函数。 \begin{aligned}&6. \ 设函数f(x)=\begin{cases}e^x,\ \ \ \ \ x \lt 0,\\\\\alpha+x,x \ge 0\end{cases}应当怎样选择数\alpha,才能使得f(x)成为在(-\infty,\ +\infty)内的连续函数。&\end{aligned} 6. 设函数f(x)= ex     x<0α+xx0应当怎样选择数α,才能使得f(x)成为在( +)内的连续函数。
解:

  由于初等函数的连续性, f ( x ) 在 ( − ∞ , 0 ) 和 ( 0 , + ∞ ) 内连续,所以要使 f ( x ) 在 ( − ∞ , + ∞ ) 内连续,   只要选择数 α ,使 f ( x ) 在 x = 0 处连续即可。   在 x = 0 处, lim ⁡ x → 0 − f ( x ) = lim ⁡ x → 0 − e x = 1 , lim ⁡ x → 0 + f ( x ) = lim ⁡ x → 0 + ( α + x ) = α , f ( 0 ) = α ,   取 α = 1 ,则 lim ⁡ x → 0 − f ( x ) = lim ⁡ x → 0 + f ( x ) = f ( 0 ) = 1 ,所以取 α = 1 , f ( x ) 就成为在 ( − ∞ , + ∞ ) 内的连续函数 \begin{aligned} &\ \ 由于初等函数的连续性,f(x)在(-\infty,0)和(0,+\infty)内连续,所以要使f(x)在(-\infty,+\infty)内连续,\\\\ &\ \ 只要选择数\alpha,使f(x)在x=0处连续即可。\\\\ &\ \ 在x=0处,\lim_{x \rightarrow 0^-}f(x)=\lim_{x \rightarrow 0^-}e^x=1,\lim_{x \rightarrow 0^+}f(x)=\lim_{x \rightarrow 0^+}(\alpha+x)=\alpha,f(0)=\alpha,\\\\ &\ \ 取\alpha=1,则\lim_{x \rightarrow 0^-}f(x)=\lim_{x \rightarrow 0^+}f(x)=f(0)=1,所以取\alpha=1,f(x)就成为在(-\infty,+\infty)内的连续函数 & \end{aligned}   由于初等函数的连续性,f(x)(0)(0+)内连续,所以要使f(x)(+)内连续,  只要选择数α,使f(x)x=0处连续即可。  x=0处,x0limf(x)=x0limex=1x0+limf(x)=x0+lim(α+x)=αf(0)=α  α=1,则x0limf(x)=x0+limf(x)=f(0)=1,所以取α=1f(x)就成为在(+)内的连续函数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值