高等数学(第七版)同济大学 习题1-9
1. 求函数 f ( x ) = x 3 + 3 x 2 − x − 3 x 2 + x − 6 的连续区间,并求极限 lim x → 0 f ( x ) , lim x → − 3 f ( x ) 及 lim x → 2 f ( x ) \begin{aligned}&1. \ 求函数f(x)=\frac{x^3+3x^2-x-3}{x^2+x-6}的连续区间,并求极限\lim_{x \rightarrow 0}f(x),\lim_{x \rightarrow -3}f(x)及\lim_{x \rightarrow 2}f(x)&\end{aligned} 1. 求函数f(x)=x2+x−6x3+3x2−x−3的连续区间,并求极限x→0limf(x),x→−3limf(x)及x→2limf(x)
解:
当 x = − 3 , x = 2 时, f ( x ) 无意义,所以这两个点为间断点,除此之外,函数都连续, 连续区间为 ( − ∞ , − 3 ) , ( − 3 , 2 ) , ( 2 , + ∞ ) f ( x ) = x 3 + 3 x 2 − x − 3 x 2 + x − 6 = ( x + 3 ) ( x 2 − 1 ) ( x + 3 ) ( x − 2 ) = x 2 − 1 x − 2 lim x → 0 f ( x ) = lim x → 0 x 2 − 1 x − 2 = 1 2 lim x → − 3 f ( x ) = lim x → − 3 x 2 − 1 x − 2 = − 8 5 lim x → 2 f ( x ) = lim x → 2 x 2 − 1 x − 2 ,而 lim x → 2 x − 2 x 2 − 1 = 0 ,所以 lim x → 2 f ( x ) = ∞ \begin{aligned} &\ \ 当x=-3,x=2时,f(x)无意义,所以这两个点为间断点,除此之外,函数都连续,\\\\ &\ \ 连续区间为(-\infty, \ -3),(-3, \ 2),(2, \ +\infty)\\\\ &\ \ f(x)=\frac{x^3+3x^2-x-3}{x^2+x-6}=\frac{(x+3)(x^2-1)}{(x+3)(x-2)}=\frac{x^2-1}{x-2}\\\\ &\ \ \lim_{x \rightarrow 0}f(x)=\lim_{x \rightarrow 0}\frac{x^2-1}{x-2}=\frac{1}{2}\\\\ &\ \ \lim_{x \rightarrow -3}f(x)=\lim_{x \rightarrow -3}\frac{x^2-1}{x-2}=-\frac{8}{5}\\\\ &\ \ \lim_{x \rightarrow 2}f(x)=\lim_{x \rightarrow 2}\frac{x^2-1}{x-2},而\lim_{x \rightarrow 2}\frac{x-2}{x^2-1}=0,所以\lim_{x \rightarrow 2}f(x)=\infty & \end{aligned} 当x=−3,x=2时,f(x)无意义,所以这两个点为间断点,除此之外,函数都连续, 连续区间为(−∞, −3),(−3, 2),(2, +∞) f(x)=x2+x−6x3+3x2−x−3=(x+3)(x−2)(x+3)(x2−1)=x−2x2−1 x→0limf(x)=x→0limx−2x2−1=21 x→−3limf(x)=x→−3limx−2x2−1=−58 x→2limf(x)=x→2limx−2x2−1,而x→2limx2−1x−2=0,所以x→2limf(x)=∞
2. 设函数 f ( x ) 与 g ( x ) 在点 x 0 连续,证明函数 φ ( x ) = m a x { f ( x ) , g ( x ) } , ψ ( x ) = m i n { f ( x ) , g ( x ) } 在点 x 0 也连续。 \begin{aligned}&2. \ 设函数f(x)与g(x)在点x_0连续,证明函数\varphi(x)=max\{f(x),g(x)\},\psi(x)=min\{f(x),g(x)\}\\\\&\ \ \ \ 在点x_0也连续。&\end{aligned} 2. 设函数f(x)与g(x)在点x0连续,证明函数φ(x)=max{f(x),g(x)},ψ(x)=min{f(x),g(x)} 在点x0也连续。
解:
φ ( x ) = m a x { f ( x ) , g ( x ) } = 1 2 [ f ( x ) + g ( x ) + ∣ f ( x ) − g ( x ) ∣ ] , ψ ( x ) = m i n { f ( x ) , g ( x ) } = 1 2 [ f ( x ) + g ( x ) − ∣ f ( x ) − g ( x ) ∣ ] 。 因 f ( x ) 在点 x 0 连续,则 ∣ f ( x ) ∣ 在点 x 0 也连续;由于连续函数的和、差仍连续,所以 φ ( x ) 、 ψ ( x ) 在点 x 0 也连续 \begin{aligned} &\ \ \varphi(x)=max\{f(x),g(x)\}=\frac{1}{2}[f(x)+g(x)+|f(x)-g(x)|],\\\\ &\ \ \psi(x)=min\{f(x),g(x)\}=\frac{1}{2}[f(x)+g(x)-|f(x)-g(x)|]。\\\\ &\ \ 因f(x)在点x_0连续,则|f(x)|在点x_0也连续;由于连续函数的和、差仍连续,所以\varphi(x)、\psi(x)在点x_0也连续 & \end{aligned} φ(x)=max{f(x),g(x)}=21[f(x)+g(x)+∣f(x)−g(x)∣], ψ(x)=min{f(x),g(x)}=21[f(x)+g(x)−∣f(x)−g(x)∣]。 因f(x)在点x0连续,则∣f(x)∣在点x0也连续;由于连续函数的和、差仍连续,所以φ(x)、ψ(x)在点x0也连续
3. 求下列极限: \begin{aligned}&3. \ 求下列极限:&\end{aligned} 3. 求下列极限:
( 1 ) lim x → 0 x 2 − 2 x + 5 ; ( 2 ) lim α → π 4 ( s i n 2 α ) 3 ; ( 3 ) lim x → π 6 l n ( 2 c o s 2 x ) ; ( 4 ) lim x → 0 x + 1 − 1 x ; ( 5 ) lim x → 1 5 x − 4 − x x − 1 ; ( 6 ) lim x → α s i n x − s i n α x − α ; ( 7 ) lim x → + ∞ ( x 2 + x − x 2 − x ) ; ( 8 ) lim x → 0 ( 1 − 1 2 x 2 ) 2 3 − 1 x l n ( 1 + x ) \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow 0}\sqrt{x^2-2x+5};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{\alpha \rightarrow \frac{\pi}{4}}(sin\ 2\alpha)^3;\\\\ &\ \ (3)\ \ \lim_{x \rightarrow \frac{\pi}{6}}ln(2cos\ 2x);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{x};\\\\ &\ \ (5)\ \ \lim_{x \rightarrow 1}\frac{\sqrt{5x-4}-\sqrt{x}}{x-1};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \lim_{x \rightarrow \alpha}\frac{sin\ x-sin\ \alpha}{x-\alpha};\\\\ &\ \ (7)\ \ \lim_{x \rightarrow +\infty}(\sqrt{x^2+x}-\sqrt{x^2-x});\ \ \ \ \ \ \ \ \ \ \ (8)\ \ \lim_{x \rightarrow 0}\frac{\left(1-\frac{1}{2}x^2\right)^{\frac{2}{3}}-1}{x\ ln(1+x)} & \end{aligned} (1) x→0limx2−2x+5; (2) α→4πlim(sin 2α)3; (3) x→6πlimln(2cos 2x); (4) x→0limxx+1−1; (5) x→1limx−15x−4−x; (6) x→αlimx−αsin x−sin α; (7) x→+∞lim(x2+x−x2−x); (8) x→0limx ln(1+x)(1−21x2)32−1
解:
( 1 ) lim x → 0 x 2 − 2 x + 5 = lim x → 0 ( x 2 − 2 x + 5 ) = 5 ( 2 ) lim α → π 4 ( s i n 2 α ) 3 = ( lim α → π 4 s i n 2 α ) 3 = ( s i n π 2 ) 3 = 1 ( 3 ) lim x → π 6 l n ( 2 c o s 2 x ) = l n ( lim x → π 6 2 c o s 2 x ) = l n ( 2 c o s π 3 ) = l n 1 = 0 ( 4 ) lim x → 0 x + 1 − 1 x = lim x → 0 x + 1 − 1 ( x + 1 + 1 ) ( x + 1 − 1 ) = lim x → 0 1 x + 1 + 1 = 1 2 ( 5 ) lim x → 1 5 x − 4 − x x − 1 = lim x → 1 ( 5 x − 4 − x ) ( 5 x − 4 + x ) ( x − 1 ) ( 5 x − 4 + x ) = lim x → 1 ( 4 x − 4 ( x − 1 ) ( 5 x − 4 + x ) ) = lim x → 1 ( 4 5 x − 4 + x ) = 2 ( 6 ) lim x → α s i n x − s i n α x − α = lim x → α 2 s i n x − α 2 c o s x + α 2 x − α = lim x → α s i n x − α 2 x − α 2 ⋅ lim x → α c o s x + α 2 = c o s α ( 7 ) lim x → + ∞ ( x 2 + x − x 2 − x ) = lim x → + ∞ 2 x x 2 + x + x 2 − x = lim x → + ∞ 2 1 + 1 x + 1 − 1 x = 1 ( 8 ) lim x → 0 ( 1 − 1 2 x 2 ) 2 3 − 1 x l n ( 1 + x ) = lim x → 0 2 3 ⋅ ( − 1 2 x 2 ) x ⋅ x = − 1 3 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow 0}\sqrt{x^2-2x+5}=\sqrt{\lim_{x \rightarrow 0}(x^2-2x+5)}=\sqrt{5}\\\\ &\ \ (2)\ \lim_{\alpha \rightarrow \frac{\pi}{4}}(sin\ 2\alpha)^3=\left(\lim_{\alpha \rightarrow \frac{\pi}{4}}sin\ 2\alpha\right)^3=\left(sin\ \frac{\pi}{2}\right)^3=1\\\\ &\ \ (3)\ \lim_{x \rightarrow \frac{\pi}{6}}ln(2cos\ 2x)=ln\left(\lim_{x \rightarrow \frac{\pi}{6}}2cos\ 2x\right)=ln\left(2cos\ \frac{\pi}{3}\right)=ln1=0\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{x}=\lim_{x \rightarrow 0}\frac{\sqrt{x+1}-1}{(\sqrt{x+1}+1)(\sqrt{x+1}-1)}=\lim_{x \rightarrow 0}\frac{1}{\sqrt{x+1}+1}=\frac{1}{2}\\\\ &\ \ (5)\ \lim_{x \rightarrow 1}\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}=\lim_{x \rightarrow 1}\frac{(\sqrt{5x-4}-\sqrt{x})(\sqrt{5x-4}+\sqrt{x})}{(x-1)(\sqrt{5x-4}+\sqrt{x})}=\lim_{x \rightarrow 1}\left(\frac{4x-4}{(x-1)(\sqrt{5x-4}+\sqrt{x})}\right)=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 1}\left(\frac{4}{\sqrt{5x-4}+\sqrt{x}}\right)=2\\\\ &\ \ (6)\ \lim_{x \rightarrow \alpha}\frac{sin\ x-sin\ \alpha}{x-\alpha}=\lim_{x \rightarrow \alpha}\frac{2sin\ \frac{x-\alpha}{2}cos\ \frac{x+\alpha}{2}}{x-\alpha}=\lim_{x \rightarrow \alpha}\frac{sin\ \frac{x-\alpha}{2}}{\frac{x-\alpha}{2}}\cdot \lim_{x \rightarrow \alpha}cos\ \frac{x+\alpha}{2}=cos\ \alpha\\\\ &\ \ (7)\ \lim_{x \rightarrow +\infty}(\sqrt{x^2+x}-\sqrt{x^2-x})=\lim_{x \rightarrow +\infty}\frac{2x}{\sqrt{x^2+x}+\sqrt{x^2-x}}=\lim_{x \rightarrow +\infty}\frac{2}{\sqrt{1+\frac{1}{x}}+\sqrt{1-\frac{1}{x}}}=1\\\\ &\ \ (8)\ \lim_{x \rightarrow 0}\frac{\left(1-\frac{1}{2}x^2\right)^{\frac{2}{3}}-1}{x\ ln(1+x)}=\lim_{x \rightarrow 0}\frac{\frac{2}{3}\cdot \left(-\frac{1}{2}x^2\right)}{x\cdot x}=-\frac{1}{3} & \end{aligned} (1) x→0limx2−2x+5=x→0lim(x2−2x+5)=5 (2) α→4πlim(sin 2α)3=(α→4πlimsin 2α)3=(sin 2π)3=1 (3) x→6πlimln(2cos 2x)=ln(x→6πlim2cos 2x)=ln(2cos 3π)=ln1=0 (4) x→0limxx+1−1=x→0lim(x+1+1)(x+1−1)x+1−1=x→0limx+1+11=21 (5) x→1limx−15x−4−x=x→1lim(x−1)(5x−4+x)(5x−4−x)(5x−4+x)=x→1lim((x−1)(5x−4+x)4x−4)= x→1lim(5x−4+x4)=2 (6) x→αlimx−αsin x−sin α=x→αlimx−α2sin 2x−αcos 2x+α=x→αlim2x−αsin 2x−α⋅x→αlimcos 2x+α=cos α (7) x→+∞lim(x2+x−x2−x)=x→+∞limx2+x+x2−x2x=x→+∞lim1+x1+1−x12=1 (8) x→0limx ln(1+x)(1−21x2)32−1=x→0limx⋅x32⋅(−21x2)=−31
4. 求下列极限: \begin{aligned}&4. \ 求下列极限:&\end{aligned} 4. 求下列极限:
( 1 ) lim x → ∞ e 1 x ; ( 2 ) lim x → 0 l n s i n x x ; ( 3 ) lim x → ∞ ( 1 + 1 x ) x 2 ; ( 4 ) lim x → 0 ( 1 + 3 t a n 2 x ) c o t 2 x ; ( 5 ) lim x → ∞ ( 3 + x 6 + x ) x − 1 2 ; ( 6 ) lim x → 0 1 + t a n x − 1 + s i n x x 1 + s i n 2 x − x ; ( 7 ) lim x → e l n x − 1 x − e ; ( 8 ) lim x → 0 e 3 x − e 2 x − e x + 1 ( 1 − x ) ( 1 + x ) 3 − 1 \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow \infty}e^{\frac{1}{x}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \lim_{x \rightarrow 0}ln\frac{sin\ x}{x};\\\\ &\ \ (3)\ \ \lim_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\frac{x}{2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow 0}(1+3tan^2\ x)^{cot^2\ x};\\\\ &\ \ (5)\ \ \lim_{x \rightarrow \infty}\left(\frac{3+x}{6+x}\right)^{\frac{x-1}{2}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ \lim_{x \rightarrow 0}\frac{\sqrt{1+tan\ x}-\sqrt{1+sin\ x}}{x\sqrt{1+sin^2\ x}-x};\\\\ &\ \ (7)\ \ \lim_{x \rightarrow e}\frac{ln\ x-1}{x-e};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ \lim_{x \rightarrow 0}\frac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)}-1} & \end{aligned} (1) x→∞limex1; (2) x→0limlnxsin x; (3) x→∞lim(1+x1)2x; (4) x→0lim(1+3tan2 x)cot2 x; (5) x→∞lim(6+x3+x)2x−1; (6) x→0limx1+sin2 x−x1+tan x−1+sin x; (7) x→elimx−eln x−1; (8) x→0lim3(1−x)(1+x)−1e3x−e2x−ex+1
解:
( 1 ) lim x → ∞ e 1 x = e lim x → ∞ 1 x = e 0 = 1 ( 2 ) lim x → 0 l n s i n x x = l n ( lim x → 0 s i n x x ) = l n 1 = 0 ( 3 ) lim x → ∞ ( 1 + 1 x ) x 2 = lim x → ∞ [ ( 1 + 1 x ) x ] 1 2 = e 1 2 = e ( 4 ) lim x → 0 ( 1 + 3 t a n 2 x ) c o t 2 x = lim x → 0 [ ( 1 + 3 t a n 2 x ) 1 3 c o t 2 x ] 3 = e 3 ( 5 ) lim x → ∞ ( 3 + x 6 + x ) x − 1 2 = lim x → ∞ [ ( 1 − 3 6 + x ) − 6 + x 3 ] − 3 2 ⋅ lim x → ∞ ( 1 − 3 6 + x ) − 7 2 = e − 3 2 ( 6 ) lim x → 0 1 + t a n x − 1 + s i n x x 1 + s i n 2 x − x = lim x → 0 t a n x − s i n x x ( 1 + s i n 2 x − 1 ) ( 1 + t a n x + 1 + s i n x ) = lim x → 0 ( s i n x x ⋅ s e c x − 1 1 + s i n 2 x − 1 ⋅ 1 1 + t a n x + 1 + s i n x ) = lim x → 0 s i n x x ⋅ lim x → 0 1 2 x 2 1 2 s i n 2 x ⋅ lim x → 0 1 1 + t a n x + 1 + s i n x = 1 2 ( 7 ) 令 t = x − e ,则 x = t + e ,当 x → e 时, t → 0 , lim x → e l n x − 1 x − e = lim t → 0 l n ( t + e ) − l n e t = lim t → 0 l n ( 1 + t e ) t = 1 e ( 8 ) lim x → 0 e 3 x − e 2 x − e x + 1 ( 1 − x ) ( 1 + x ) 3 − 1 = lim x → 0 ( e 2 x − 1 ) ( e x − 1 ) ( 1 − x 2 ) 1 3 − 1 = lim x → 0 2 x ⋅ x − 1 3 x 2 = − 6 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow \infty}e^{\frac{1}{x}}=e^{{\displaystyle \lim_{x \rightarrow \infty}\frac{1}{x}}}=e^0=1\\\\ &\ \ (2)\ \lim_{x \rightarrow 0}ln\frac{sin\ x}{x}=ln\left(\lim_{x \rightarrow 0}\frac{sin\ x}{x}\right)=ln1=0\\\\ &\ \ (3)\ \lim_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\frac{x}{2}}=\lim_{x \rightarrow \infty}\left[\left(1+\frac{1}{x}\right)^x\right]^{\frac{1}{2}}=e^{\frac{1}{2}}=\sqrt{e}\\\\ &\ \ (4)\ \lim_{x \rightarrow 0}(1+3tan^2\ x)^{cot^2\ x}=\lim_{x \rightarrow 0}[(1+3tan^2\ x)^{\frac{1}{3}cot^2\ x}]^3=e^3\\\\ &\ \ (5)\ \lim_{x \rightarrow \infty}\left(\frac{3+x}{6+x}\right)^{\frac{x-1}{2}}=\lim_ {x \rightarrow \infty}\left[\left(1-\frac{3}{6+x}\right)^{-\frac{6+x}{3}}\right]^{-\frac{3}{2}}\cdot \lim_{x \rightarrow \infty}\left(1-\frac{3}{6+x}\right)^{-\frac{7}{2}}=e^{-\frac{3}{2}}\\\\ &\ \ (6)\ \lim_{x \rightarrow 0}\frac{\sqrt{1+tan\ x}-\sqrt{1+sin\ x}}{x\sqrt{1+sin^2\ x}-x}=\lim_{x \rightarrow 0}\frac{tan\ x-sin\ x}{x(\sqrt{1+sin^2\ x}-1)(\sqrt{1+tan\ x}+\sqrt{1+sin\ x})}=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 0}\left(\frac{sin\ x}{x}\cdot \frac{sec\ x-1}{\sqrt{1+sin^2\ x}-1}\cdot \frac{1}{\sqrt{1+tan\ x}+\sqrt{1+sin\ x}}\right)=\\\\ &\ \ \ \ \ \ \ \ \lim_{x \rightarrow 0}\frac{sin\ x}{x}\cdot \lim_{x \rightarrow 0}\frac{\frac{1}{2}x^2}{\frac{1}{2}sin^2\ x}\cdot \lim_{x \rightarrow 0}\frac{1}{\sqrt{1+tan\ x}+\sqrt{1+sin\ x}}=\frac{1}{2}\\\\ &\ \ (7)\ 令t=x-e,则x=t+e,当x \rightarrow e时,t \rightarrow 0,\lim_{x \rightarrow e}\frac{ln\ x-1}{x-e}=\lim_{t \rightarrow 0}\frac{ln(t+e)-ln\ e}{t}=\lim_{t \rightarrow 0}\frac{ln\left(1+\frac{t}{e}\right)}{t}=\frac{1}{e}\\\\ &\ \ (8)\ \lim_{x \rightarrow 0}\frac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)}-1}=\lim_{x \rightarrow 0}\frac{(e^{2x}-1)(e^x-1)}{(1-x^2)^{\frac{1}{3}}-1}=\lim_{x \rightarrow 0}\frac{2x\cdot x}{-\frac{1}{3}x^2}=-6 & \end{aligned} (1) x→∞limex1=ex→∞limx1=e0=1 (2) x→0limlnxsin x=ln(x→0limxsin x)=ln1=0 (3) x→∞lim(1+x1)2x=x→∞lim[(1+x1)x]21=e21=e (4) x→0lim(1+3tan2 x)cot2 x=x→0lim[(1+3tan2 x)31cot2 x]3=e3 (5) x→∞lim(6+x3+x)2x−1=x→∞lim[(1−6+x3)−36+x]−23⋅x→∞lim(1−6+x3)−27=e−23 (6) x→0limx1+sin2 x−x1+tan x−1+sin x=x→0limx(1+sin2 x−1)(1+tan x+1+sin x)tan x−sin x= x→0lim(xsin x⋅1+sin2 x−1sec x−1⋅1+tan x+1+sin x1)= x→0limxsin x⋅x→0lim21sin2 x21x2⋅x→0lim1+tan x+1+sin x1=21 (7) 令t=x−e,则x=t+e,当x→e时,t→0,x→elimx−eln x−1=t→0limtln(t+e)−ln e=t→0limtln(1+et)=e1 (8) x→0lim3(1−x)(1+x)−1e3x−e2x−ex+1=x→0lim(1−x2)31−1(e2x−1)(ex−1)=x→0lim−31x22x⋅x=−6
5. 设 f ( x ) 在 R 上连续,且 f ( x ) ≠ 0 , φ ( x ) 在 R 上有定义,且由间断点,则下列陈述中哪些是对的, 哪些是错的?如果是对的,试说明理由;如果是错的,试给出要给反例。 \begin{aligned}&5. \ 设f(x)在R上连续,且f(x) \neq 0,\varphi(x)在R上有定义,且由间断点,则下列陈述中哪些是对的,\\\\&\ \ \ \ \ 哪些是错的?如果是对的,试说明理由;如果是错的,试给出要给反例。&\end{aligned} 5. 设f(x)在R上连续,且f(x)=0,φ(x)在R上有定义,且由间断点,则下列陈述中哪些是对的, 哪些是错的?如果是对的,试说明理由;如果是错的,试给出要给反例。
( 1 ) φ [ f ( x ) ] 必有间断点; ( 2 ) [ φ ( x ) ] 2 必有间断点; ( 3 ) f [ φ ( x ) ] 未必有间断点; ( 4 ) φ ( x ) f ( x ) 必有间断点 \begin{aligned} &\ \ (1)\ \ \varphi[f(x)]必有间断点;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ [\varphi(x)]^2必有间断点;\\\\ &\ \ (3)\ \ f[\varphi(x)]未必有间断点;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \frac{\varphi(x)}{f(x)}必有间断点 & \end{aligned} (1) φ[f(x)]必有间断点; (2) [φ(x)]2必有间断点; (3) f[φ(x)]未必有间断点; (4) f(x)φ(x)必有间断点
解:
( 1 ) 错的, φ ( x ) = s g n x , f ( x ) = e x , φ [ f ( x ) ] ≡ 1 在 R 上连续 ( 2 ) 错的, φ ( x ) = { 1 , x ∈ Q , − 1 , x ∈ R \ Q , [ φ ( x ) ] 2 ≡ 1 在 R 上连续 ( 3 ) 对的, φ ( x ) = { 1 , x ∈ Q , − 1 , x ∈ R \ Q , f ( x ) = ∣ x ∣ + 1 , f [ φ ( x ) ] ≡ 2 在 R 上连续 ( 4 ) 对的,如果 F ( x ) = φ ( x ) f ( x ) 在 R 上连续,则 φ ( x ) = F ( x ) ⋅ f ( x ) 也在 R 上连续,与已知矛盾 \begin{aligned} &\ \ (1)\ 错的,\varphi(x)=sgn\ x,f(x)=e^x,\varphi[f(x)] \equiv 1在R上连续\\\\ &\ \ (2)\ 错的,\varphi(x)=\begin{cases}1,\ \ \ x \in Q,\\\\-1,x \in R\verb|\|Q,\end{cases}[\varphi(x)]^2 \equiv 1在R上连续\\\\ &\ \ (3)\ 对的,\varphi(x)=\begin{cases}1,\ \ \ x \in Q,\\\\-1,x \in R\verb|\|Q,\end{cases}f(x)=|x|+1,f[\varphi(x)] \equiv 2在R上连续\\\\ &\ \ (4)\ 对的,如果F(x)=\frac{\varphi(x)}{f(x)}在R上连续,则\varphi(x)=F(x)\cdot f(x)也在R上连续,与已知矛盾 & \end{aligned} (1) 错的,φ(x)=sgn x,f(x)=ex,φ[f(x)]≡1在R上连续 (2) 错的,φ(x)=⎩ ⎨ ⎧1, x∈Q,−1,x∈R\Q,[φ(x)]2≡1在R上连续 (3) 对的,φ(x)=⎩ ⎨ ⎧1, x∈Q,−1,x∈R\Q,f(x)=∣x∣+1,f[φ(x)]≡2在R上连续 (4) 对的,如果F(x)=f(x)φ(x)在R上连续,则φ(x)=F(x)⋅f(x)也在R上连续,与已知矛盾
6. 设函数 f ( x ) = { e x , x < 0 , α + x , x ≥ 0 应当怎样选择数 α ,才能使得 f ( x ) 成为在 ( − ∞ , + ∞ ) 内的连续函数。 \begin{aligned}&6. \ 设函数f(x)=\begin{cases}e^x,\ \ \ \ \ x \lt 0,\\\\\alpha+x,x \ge 0\end{cases}应当怎样选择数\alpha,才能使得f(x)成为在(-\infty,\ +\infty)内的连续函数。&\end{aligned} 6. 设函数f(x)=⎩ ⎨ ⎧ex, x<0,α+x,x≥0应当怎样选择数α,才能使得f(x)成为在(−∞, +∞)内的连续函数。
解:
由于初等函数的连续性, f ( x ) 在 ( − ∞ , 0 ) 和 ( 0 , + ∞ ) 内连续,所以要使 f ( x ) 在 ( − ∞ , + ∞ ) 内连续, 只要选择数 α ,使 f ( x ) 在 x = 0 处连续即可。 在 x = 0 处, lim x → 0 − f ( x ) = lim x → 0 − e x = 1 , lim x → 0 + f ( x ) = lim x → 0 + ( α + x ) = α , f ( 0 ) = α , 取 α = 1 ,则 lim x → 0 − f ( x ) = lim x → 0 + f ( x ) = f ( 0 ) = 1 ,所以取 α = 1 , f ( x ) 就成为在 ( − ∞ , + ∞ ) 内的连续函数 \begin{aligned} &\ \ 由于初等函数的连续性,f(x)在(-\infty,0)和(0,+\infty)内连续,所以要使f(x)在(-\infty,+\infty)内连续,\\\\ &\ \ 只要选择数\alpha,使f(x)在x=0处连续即可。\\\\ &\ \ 在x=0处,\lim_{x \rightarrow 0^-}f(x)=\lim_{x \rightarrow 0^-}e^x=1,\lim_{x \rightarrow 0^+}f(x)=\lim_{x \rightarrow 0^+}(\alpha+x)=\alpha,f(0)=\alpha,\\\\ &\ \ 取\alpha=1,则\lim_{x \rightarrow 0^-}f(x)=\lim_{x \rightarrow 0^+}f(x)=f(0)=1,所以取\alpha=1,f(x)就成为在(-\infty,+\infty)内的连续函数 & \end{aligned} 由于初等函数的连续性,f(x)在(−∞,0)和(0,+∞)内连续,所以要使f(x)在(−∞,+∞)内连续, 只要选择数α,使f(x)在x=0处连续即可。 在x=0处,x→0−limf(x)=x→0−limex=1,x→0+limf(x)=x→0+lim(α+x)=α,f(0)=α, 取α=1,则x→0−limf(x)=x→0+limf(x)=f(0)=1,所以取α=1,f(x)就成为在(−∞,+∞)内的连续函数