高等数学(第七版)同济大学 习题3-3
1. 按 ( x − 4 ) 的幂展开多项式 f ( x ) = x 4 − 5 x 3 + x 2 − 3 x + 4. \begin{aligned}&1. \ 按(x-4)的幂展开多项式f(x)=x^4-5x^3+x^2-3x+4.&\end{aligned} 1. 按(x−4)的幂展开多项式f(x)=x4−5x3+x2−3x+4.
解:
因为 f ′ ( x ) = 4 x 3 − 15 x 2 + 2 x − 3 , f ′ ′ ( x ) = 12 x 2 − 30 x + 2 , f ′ ′ ′ ( x ) = 24 x − 30 , f ( 4 ) ( x ) = 24 , f ( n ) ( x ) = 0. ( n ≥ 5 ) f ( 4 ) = − 56 , f ′ ( 4 ) = 21 , f ′ ′ ( 4 ) = 74 , f ′ ′ ′ ( 4 ) = 66 , f ( 4 ) ( 4 ) = 24 , 所以 x 4 − 5 x 3 + x 2 − 3 x + 4 = f ( 4 ) + f ′ ( 4 ) ( x − 4 ) + f ′ ′ ( 4 ) 2 ! ( x − 4 ) 2 + f ′ ′ ′ ( 4 ) 3 ! ( x − 4 ) 3 + f ( 4 ) ( 4 ) 4 ! ( x − 4 ) 4 = − 56 + 21 ( x − 4 ) + 37 ( x − 4 ) 2 + 11 ( x − 4 ) 3 + ( x − 4 ) 4 \begin{aligned} &\ \ 因为f'(x)=4x^3-15x^2+2x-3,f''(x)=12x^2-30x+2,f'''(x)=24x-30,f^{(4)}(x)=24,f^{(n)}(x)=0.(n \ge 5)\\\\ &\ \ f(4)=-56,f'(4)=21,f''(4)=74,f'''(4)=66,f^{(4)}(4)=24,\\\\ &\ \ 所以x^4-5x^3+x^2-3x+4=f(4)+f'(4)(x-4)+\frac{f''(4)}{2!}(x-4)^2+\frac{f'''(4)}{3!}(x-4)^3+\frac{f^{(4)}(4)}{4!}(x-4)^4=\\\\ &\ \ -56+21(x-4)+37(x-4)^2+11(x-4)^3+(x-4)^4 & \end{aligned} 因为f′(x)=4x3−15x2+2x−3,f′′(x)=12x2−30x+2,f′′′(x)=24x−30,f(4)(x)=24,f(n)(x)=0.(n≥5) f(4)=−56,f′(4)=21,f′′(4)=74,f′′′(4)=66,f(4)(4)=24, 所以x4−5x3+x2−3x+4=f(4)+f′(4)(x−4)+2!f′′(4)(x−4)2+3!f′′′(4)(x−4)3+4!f(4)(4)(x−4)4= −56+21(x−4)+37(x−4)2+11(x−4)3+(x−4)4
2. 应用麦克劳林公式,按 x 的幂展开函数 f ( x ) = ( x 2 − 3 x + 1 ) 3 . \begin{aligned}&2. \ 应用麦克劳林公式,按x的幂展开函数f(x)=(x^2-3x+1)^3.&\end{aligned} 2. 应用麦克劳林公式,按x的幂展开函数f(x)=(x2−3x+1)3.
解:
因为 f ( x ) = x 6 − 9 x 5 + 30 x 4 − 45 x 3 + 30 x 2 − 9 x + 1 , f ′ ( x ) = 6 x 5 − 45 x 4 + 120 x 3 − 135 x 2 + 60 x − 9 , f ′ ′ ( x ) = 30 x 4 − 180 x 3 + 360 x 2 − 270 x + 60 , f ′ ′ ′ ( x ) = 120 x 3 − 540 x 2 + 720 x − 270 , f ( 4 ) ( x ) = 360 x 2 − 1080 x + 720 , f ( 5 ) ( x ) = 720 x − 1080 , f ( 6 ) ( x ) = 720 , f ( n ) ( x ) = 0. ( n ≥ 7 ) , f ( 0 ) = 1 , f ′ ( 0 ) = − 9 , f ′ ′ ( 0 ) = 60 , f ′ ′ ′ ( 0 ) = − 270 , f ( 4 ) ( 0 ) = 720 , f ( 5 ) ( 0 ) = − 1080 , f ( 6 ) ( 0 ) = 720 , 所以, ( x 2 − 3 x + 1 ) 3 = f ( 0 ) + f " ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + f ( 4 ) ( 0 ) 4 ! x 4 + f ( 5 ) ( 0 ) 5 ! x 5 + f ( 6 ) ( 0 ) 6 ! x 6 = 1 − 9 x + 30 x 2 − 45 x 3 + 30 x 4 − 9 x 5 + x 6 . \begin{aligned} &\ \ 因为f(x)=x^6-9x^5+30x^4-45x^3+30x^2-9x+1,f'(x)=6x^5-45x^4+120x^3-135x^2+60x-9,\\\\ &\ \ f''(x)=30x^4-180x^3+360x^2-270x+60,f'''(x)=120x^3-540x^2+720x-270,f^{(4)}(x)=360x^2-1080x+720,\\\\ &\ \ f^{(5)}(x)=720x-1080,f^{(6)}(x)=720,f^{(n)}(x)=0.\ (n \ge 7),\\\\ &\ \ f(0)=1,f'(0)=-9,f''(0)=60,f'''(0)=-270,f^{(4)}(0)=720,f^{(5)}(0)=-1080,f^{(6)}(0)=720,\\\\ &\ \ 所以,(x^2-3x+1)^3=f(0)+f"(0)x+\frac{f''(0)}{2!}x^2+\frac{f'''(0)}{3!}x^3+\frac{f^{(4)}(0)}{4!}x^4+\frac{f^{(5)}(0)}{5!}x^5+\frac{f^{(6)}(0)}{6!}x^6=\\\\ &\ \ 1-9x+30x^2-45x^3+30x^4-9x^5+x^6. & \end{aligned} 因为f(x)=x6−9x5+30x4−45x3+30x2−9x+1,f′(x)=6x5−45x4+120x3−135x2+60x−9, f′′(x)=30x4−180x3+360x2−270x+60,f′′′(x)=120x3−540x2+720x−270,f(4)(x)=360x2−1080x+720, f(5)(x)=720x−1080,f(6)(x)=720,f(n)(x)=0. (n≥7), f(0)=1,f′(0)=−9,f′′(0)=60,f′′′(0)=−270,f(4)(0)=720,f(5)(0)=−1080,f(6)(0)=720, 所以,(x2−3x+1)3=f(0)+f"(0)x+2!f′′(0)x2+3!f′′′(0)x3+4!f(4)(0)x4+5!f(5)(0)x5+6!f(6)(0)x6= 1−9x+30x2−45x3+30x4−9x5+x6.
3. 求函数 f ( x ) = x 按 ( x − 4 ) 的幂展开的带有拉格朗日余项的 3 阶泰勒公式 . \begin{aligned}&3. \ 求函数f(x)=\sqrt{x}按(x-4)的幂展开的带有拉格朗日余项的3阶泰勒公式.&\end{aligned} 3. 求函数f(x)=x按(x−4)的幂展开的带有拉格朗日余项的3阶泰勒公式.
解:
因为 f ( x ) = x , f ′ ( x ) = 1 2 x − 1 2 , f ′ ′ ( x ) = − 1 4 x − 3 2 , f ′ ′ ′ ( x ) = 3 8 x − 5 2 , f ( 4 ) ( x ) = − 15 16 x − 7 2 f ( 4 ) = 2 , f ′ ( 4 ) = 1 4 , f ′ ′ ( 4 ) = − 1 32 , f ′ ′ ′ ( 4 ) = 3 256 . 所以 x = f ( 4 ) + f ′ ( 4 ) ( x − 4 ) + f ′ ′ ( 4 ) 2 ! ( x − 4 ) 2 + f ′ ′ ′ ( 4 ) 3 ! ( x − 4 ) 3 + f ( 4 ) ( ξ ) 4 ! ( x − 4 ) 4 = 2 + 1 4 ( x − 4 ) − 1 64 ( x − 4 ) 2 + 1 512 ( x − 4 ) 3 − 15 384 ξ 7 2 ( x − 4 ) 4 ,其中 ξ 介于 x 与 4 之间。 \begin{aligned} &\ \ 因为f(x)=\sqrt{x},f'(x)=\frac{1}{2}x^{-\frac{1}{2}},f''(x)=-\frac{1}{4}x^{-\frac{3}{2}},f'''(x)=\frac{3}{8}x^{-\frac{5}{2}},f^{(4)}(x)=-\frac{15}{16}x^{-\frac{7}{2}}\\\\ &\ \ f(4)=2,f'(4)=\frac{1}{4},f''(4)=-\frac{1}{32},f'''(4)=\frac{3}{256}.\\\\ &\ \ 所以\sqrt{x}=f(4)+f'(4)(x-4)+\frac{f''(4)}{2!}(x-4)^2+\frac{f'''(4)}{3!}(x-4)^3+\frac{f^{(4)}(\xi)}{4!}(x-4)^4=\\\\ &\ \ 2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^2+\frac{1}{512}(x-4)^3-\frac{15}{384\xi^{\frac{7}{2}}}(x-4)^4,其中\xi介于x与4之间。 & \end{aligned} 因为f(x)=x,f′(x)=21x−21,f′′(x)=−41x−23,f′′′(x)=83x−25,f(4)(x)=−1615x−27 f(4)=2,f′(4)=41,f′′(4)=−321,f′′′(4)=2563. 所以x=f(4)+f′(4)(x−4)+2!f′′(4)(x−4)2+3!f′′′(4)(x−4)3+4!f(4)(ξ)(x−4)4= 2+41(x−4)−641(x−4)2+5121(x−4)3−384ξ2715(x−4)4,其中ξ介于x与4之间。
4. 求函数 f ( x ) = l n x 按 ( x − 2 ) 的幂展开的带有佩亚诺余项的 n 阶泰勒公式 . \begin{aligned}&4. \ 求函数f(x)=ln\ x按(x-2)的幂展开的带有佩亚诺余项的n阶泰勒公式.&\end{aligned} 4. 求函数f(x)=ln x按(x−2)的幂展开的带有佩亚诺余项的n阶泰勒公式.
解:
因为 f ( x ) = l n x , f ′ ( x ) = 1 x , f ′ ′ ( x ) = − 1 x 2 , f ′ ′ ′ ( x ) = 2 x 3 , f ( 4 ) ( x ) = − 6 x 4 , f ( n ) ( x ) = ( − 1 ) n − 1 ( n − 1 ) ! x n , f ( n ) ( 2 ) = ( − 1 ) n − 1 ( n − 1 ) ! 2 n 所以 l n x = f ( 2 ) + f ′ ( 2 ) ( x − 2 ) + f ′ ′ ( 2 ) 2 ! ( x − 2 ) 2 + f ′ ′ ′ ( 2 ) 3 ! ( x − 2 ) 3 + ⋅ ⋅ ⋅ + f ( n ) ( 2 ) n ! ( x − 2 ) n + o [ ( x − 2 ) n ] = l n 2 + 1 2 ( x − 2 ) − 1 2 3 ( x − 2 ) 2 + 1 3 ⋅ 2 3 ( x − 2 ) 3 + ⋅ ⋅ ⋅ + ( − 1 ) n − 1 1 n ⋅ 2 n ( x − 2 ) n + o [ ( x − 2 ) n ] \begin{aligned} &\ \ 因为f(x)=ln\ x,f'(x)=\frac{1}{x},f''(x)=-\frac{1}{x^2},f'''(x)=\frac{2}{x^3},f^{(4)}(x)=-\frac{6}{x^4},\\\\ &\ \ f^{(n)}(x)=\frac{(-1)^{n-1}(n-1)!}{x^n},f^{(n)}(2)=\frac{(-1)^{n-1}(n-1)!}{2^n}\\\\ &\ \ 所以ln\ x=f(2)+f'(2)(x-2)+\frac{f''(2)}{2!}(x-2)^2+\frac{f'''(2)}{3!}(x-2)^3+\cdot\cdot\cdot+\frac{f^{(n)}(2)}{n!}(x-2)^n+o[(x-2)^n]=\\\\ &\ \ ln\ 2+\frac{1}{2}(x-2)-\frac{1}{2^3}(x-2)^2+\frac{1}{3\cdot 2^3}(x-2)^3+\cdot\cdot\cdot+(-1)^{n-1}\frac{1}{n\cdot2^n}(x-2)^n+o[(x-2)^n] & \end{aligned} 因为f(x)=ln x,f′(x)=x1,f′′(x)=−x21,f′′′(x)=x32,f(4)(x)=−x46, f(n)(x)=xn(−1)n−1(n−1)!,f(n)(2)=2n(−1)n−1(n−1)! 所以ln x=f(2)+f′(2)(x−2)+2!f′′(2)(x−2)2+3!f′′′(2)(x−2)3+⋅⋅⋅+n!f(n)(2)(x−2)n+o[(x−2)n]= ln 2+21(x−2)−231(x−2)2+3⋅231(x−2)3+⋅⋅⋅+(−1)n−1n⋅2n1(x−2)n+o[(x−2)n]
5. 求函数 f ( x ) = 1 x 按 ( x + 1 ) 的幂展开的带有拉格朗日余项的 n 阶泰勒公式 . \begin{aligned}&5. \ 求函数f(x)=\frac{1}{x}按(x+1)的幂展开的带有拉格朗日余项的n阶泰勒公式.&\end{aligned} 5. 求函数f(x)=x1按(x+1)的幂展开的带有拉格朗日余项的n阶泰勒公式.
解:
因为 f ( x ) = 1 x , f ′ ( x ) = − 1 x 2 , f ′ ′ ( x ) = 2 x 3 , f ′ ′ ′ ( x ) = − 6 x 4 , f ( 4 ) ( x ) = 24 x 5 , f ( n ) ( x ) = ( − 1 ) n n ! x n + 1 , f ( n ) ( − 1 ) = − n ! , 1 x = f ( − 1 ) + f ′ ( − 1 ) ( x + 1 ) + f ′ ′ ( − 1 ) 2 ! ( x + 1 ) 2 + f ′ ′ ′ ( − 1 ) 3 ! ( x + 1 ) 3 + ⋅ ⋅ ⋅ + f ( n ) ( − 1 ) n ! ( x + 1 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x + 1 ) n + 1 = − [ 1 + ( x + 1 ) + ( x + 1 ) 2 + ⋅ ⋅ ⋅ + ( x + 1 ) n ] + ( − 1 ) n + 1 ξ − ( n + 2 ) ( x + 1 ) n + 1 ,其中 ξ 介于 x 与 − 1 之间。 \begin{aligned} &\ \ 因为f(x)=\frac{1}{x},f'(x)=-\frac{1}{x^2},f''(x)=\frac{2}{x^3},f'''(x)=-\frac{6}{x^4},f^{(4)}(x)=\frac{24}{x^5},\\\\ &\ \ f^{(n)}(x)=\frac{(-1)^nn!}{x^{n+1}},f^{(n)}(-1)=-n!,\\\\ &\ \ \frac{1}{x}=f(-1)+f'(-1)(x+1)+\frac{f''(-1)}{2!}(x+1)^2+\frac{f'''(-1)}{3!}(x+1)^3+\cdot\cdot\cdot+\frac{f^{(n)}(-1)}{n!}(x+1)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x+1)^{n+1}=\\\\ &\ \ -[1+(x+1)+(x+1)^2+\cdot\cdot\cdot+(x+1)^n]+(-1)^{n+1}\xi^{-(n+2)}(x+1)^{n+1},其中\xi介于x与-1之间。 & \end{aligned} 因为f(x)=x1,f′(x)=−x21,f′′(x)=x32,f′′′(x)=−x46,f(4)(x)=x524, f(n)(x)=xn+1(−1)nn!,f(n)(−1)=−n!, x1=f(−1)+f′(−1)(x+1)+2!f′′(−1)(x+1)2+3!f′′′(−1)(x+1)3+⋅⋅⋅+n!f(n)(−1)(x+1)n+(n+1)!f(n+1)(ξ)(x+1)n+1= −[1+(x+1)+(x+1)2+⋅⋅⋅+(x+1)n]+(−1)n+1ξ−(n+2)(x+1)n+1,其中ξ介于x与−1之间。
6. 求函数 f ( x ) = t a n x 的带有佩亚诺余项的 3 阶麦克劳林公式 . \begin{aligned}&6. \ 求函数f(x)=tan\ x的带有佩亚诺余项的3阶麦克劳林公式.&\end{aligned} 6. 求函数f(x)=tan x的带有佩亚诺余项的3阶麦克劳林公式.
解:
因为 f ( x ) = t a n x , f ′ ( x ) = s e c 2 x , f ′ ′ ( x ) = 2 s e c 2 x t a n x , f ′ ′ ′ ( x ) = 4 s e c 2 x t a n 2 x + 2 s e c 4 x , f ( 4 ) ( x ) = 8 s e c 2 x t a n 3 x + 8 s e c 4 x t a n x + 8 s e c 4 x t a n x = 8 s i n 3 x + 16 s i n x c o s 5 x f ( 0 ) = 0 , f ′ ( 0 ) = 1 , f ′ ′ ( 0 ) = 0 , f ′ ′ ′ ( 0 ) = 2 ,所以 f ( x ) = x + x 3 3 + o ( x 3 ) . \begin{aligned} &\ \ 因为f(x)=tan\ x,f'(x)=sec^2\ x,f''(x)=2sec^2\ xtan\ x,f'''(x)=4sec^2\ xtan^2\ x+2sec^4\ x,\\\\ &\ \ f^{(4)}(x)=8sec^2\ xtan^3\ x+8sec^4\ xtan\ x+8sec^4\ xtan\ x=\frac{8sin^3\ x+16sin\ x}{cos^5\ x}\\\\ &\ \ f(0)=0,f'(0)=1,f''(0)=0,f'''(0)=2,所以f(x)=x+\frac{x^3}{3}+o(x^3). & \end{aligned} 因为f(x)=tan x,f′(x)=sec2 x,f′′(x)=2sec2 xtan x,f′′′(x)=4sec2 xtan2 x+2sec4 x, f(4)(x)=8sec2 xtan3 x+8sec4 xtan x+8sec4 xtan x=cos5 x8sin3 x+16sin x f(0)=0,f′(0)=1,f′′(0)=0,f′′′(0)=2,所以f(x)=x+3x3+o(x3).
7. 求函数 f ( x ) = x e x 的带有佩亚诺余项的 n 阶麦克劳林公式 . \begin{aligned}&7. \ 求函数f(x)=xe^x的带有佩亚诺余项的n阶麦克劳林公式.&\end{aligned} 7. 求函数f(x)=xex的带有佩亚诺余项的n阶麦克劳林公式.
解:
因为 f ( x ) = x e x , f ( n ) ( x ) = ( n + x ) e x , f ( n ) ( 0 ) = n ,所以 x e x = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋅ ⋅ ⋅ + 1 n ! f ( n ) ( 0 ) x n + o ( x n ) = x + x 2 + 1 2 ! x 3 + ⋅ ⋅ ⋅ + x n ( n − 1 ) ! + o ( x n ) . \begin{aligned} &\ \ 因为f(x)=xe^x,f^{(n)}(x)=(n+x)e^x,f^{(n)}(0)=n,所以xe^x=f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2+\cdot\cdot\cdot+\frac{1}{n!}f^{(n)}(0)x^n+o(x^n)=\\\\ &\ \ x+x^2+\frac{1}{2!}x^3+\cdot\cdot\cdot+\frac{x^n}{(n-1)!}+o(x^n). & \end{aligned} 因为f(x)=xex,f(n)(x)=(n+x)ex,f(n)(0)=n,所以xex=f(0)+f′(0)x+2!1f′′(0)x2+⋅⋅⋅+n!1f(n)(0)xn+o(xn)= x+x2+2!1x3+⋅⋅⋅+(n−1)!xn+o(xn).
8. 验证当 0 < x ≤ 1 2 时,按公式 e x ≈ 1 + x + x 2 2 + x 3 6 计算 e x 的近似值时,所产生的误差小于 0.01 , 并求 e 的近似值,使误差小于 0.01. \begin{aligned}&8. \ 验证当0 \lt x \le \frac{1}{2}时,按公式e^x \approx 1+x+\frac{x^2}{2}+\frac{x^3}{6}计算e^x的近似值时,所产生的误差小于0.01,\\\\&\ \ \ \ 并求\sqrt{e}的近似值,使误差小于0.01.&\end{aligned} 8. 验证当0<x≤21时,按公式ex≈1+x+2x2+6x3计算ex的近似值时,所产生的误差小于0.01, 并求e的近似值,使误差小于0.01.
解:
设 f ( x ) = e x , f ( n ) ( 0 ) = 1 , 所以, e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + e ξ 4 ! x 4 ,其中 ξ 介于 0 与 x 之间,按公式 e x ≈ 1 + x + x 2 2 + x 3 6 计算 e x 的近似值时, 其误差为 ∣ R 3 ( x ) ∣ = e ξ 4 ! x 4 . 当 0 < x ≤ 1 2 时, 0 < ξ < 1 2 , ∣ R 3 ( x ) ∣ ≤ 3 1 2 4 ! ( 1 2 ) 4 ≈ 0.0045 < 0.01 e ≈ 1 + 1 2 + 1 2 ( 1 2 ) 2 + 1 6 ( 1 2 ) 3 ≈ 1.645. \begin{aligned} &\ \ 设f(x)=e^x,f^{(n)}(0)=1,\\\\ &\ \ 所以,e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\frac{e^{\xi}}{4!}x^4,其中\xi介于0与x之间,按公式e^x \approx 1+x+\frac{x^2}{2}+\frac{x^3}{6}计算e^x的近似值时,\\\\ &\ \ 其误差为|R_3(x)|=\frac{e^{\xi}}{4!}x^4.当0 \lt x \le \frac{1}{2}时,0 \lt \xi \lt \frac{1}{2},|R_3(x)| \le \frac{3^{\frac{1}{2}}}{4!}\left(\frac{1}{2}\right)^4 \approx 0.0045 \lt 0.01\\\\ &\ \ \sqrt{e} \approx 1+\frac{1}{2}+\frac{1}{2}\left(\frac{1}{2}\right)^2+\frac{1}{6}\left(\frac{1}{2}\right)^3 \approx 1.645. & \end{aligned} 设f(x)=ex,f(n)(0)=1, 所以,ex=1+x+2!1x2+3!1x3+4!eξx4,其中ξ介于0与x之间,按公式ex≈1+x+2x2+6x3计算ex的近似值时, 其误差为∣R3(x)∣=4!eξx4.当0<x≤21时,0<ξ<21,∣R3(x)∣≤4!321(21)4≈0.0045<0.01 e≈1+21+21(21)2+61(21)3≈1.645.
9. 应用 3 阶泰勒公式求下列各数的近似值,并估计误差: \begin{aligned}&9. \ 应用3阶泰勒公式求下列各数的近似值,并估计误差:&\end{aligned} 9. 应用3阶泰勒公式求下列各数的近似值,并估计误差:
( 1 ) 30 3 ; ( 2 ) s i n 1 8 ∘ \begin{aligned} &\ \ (1)\ \ \sqrt[3]{30};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ sin\ 18^{\circ} & \end{aligned} (1) 330; (2) sin 18∘
解:
( 1 ) 因为 f ( x ) = 1 + x 3 = ( 1 + x ) 1 3 ≈ 1 + 1 3 x + 1 3 ( 1 3 − 1 ) 2 ! x 2 + 1 3 ( 1 3 − 1 ) ( 1 3 − 2 ) 3 ! x 3 = 1 + 1 3 x − 1 9 x 2 + 5 81 x 3 , R 3 ( x ) = 1 3 ( 1 3 − 1 ) ( 1 3 − 2 ) ( 1 3 − 3 ) 4 ! ( 1 + ξ ) 1 3 − 4 x 4 ,其中 ξ 介于 0 与 x 之间。 所以, 30 3 = 27 + 3 3 = 3 1 + 1 9 3 ≈ 3 [ 1 + 1 3 ⋅ 1 9 − 1 9 ( 1 9 ) 2 + 5 81 ( 1 9 ) 3 ] ≈ 3.1072 , 误差 ∣ R 3 ∣ = 3 ⋅ ∣ 1 3 ( 1 3 − 1 ) ( 1 3 − 2 ) ( 1 3 − 3 ) 4 ! ( 1 + ξ ) 1 3 − 4 ( 1 9 ) 4 ∣ , ξ 介于 0 与 1 9 之间,即 0 < ξ < 1 9 , 则 ∣ R 3 ∣ = ∣ 80 4 ! ⋅ 3 11 ∣ ≈ 1.88 × 1 0 − 5 ( 2 ) 因 s i n x ≈ x − x 3 3 ! , R 4 ( x ) = s i n ( ξ + 5 π 2 ) 5 ! x 5 , ξ 介于 0 与 π 10 之间, 所以, s i n 1 8 ∘ = s i n π 10 ≈ π 10 − 1 3 ! ( π 10 ) 3 ≈ 0.309 , ∣ R 4 ∣ ≤ 1 5 ! ( π 10 ) 5 ≈ 2.55 × 1 0 − 5 . \begin{aligned} &\ \ (1)\ 因为f(x)=\sqrt[3]{1+x}=(1+x)^{\frac{1}{3}} \approx 1+\frac{1}{3}x+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{2!}x^2+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!}x^3=1+\frac{1}{3}x-\frac{1}{9}x^2+\frac{5}{81}x^3,\\\\ &\ \ R_3(x)=\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)\left(\frac{1}{3}-3\right)}{4!}(1+\xi)^{\frac{1}{3}-4}x^4,其中\xi介于0与x之间。\\\\ &\ \ 所以,\sqrt[3]{30}=\sqrt[3]{27+3}=3\sqrt[3]{1+\frac{1}{9}} \approx 3\left[1+\frac{1}{3}\cdot \frac{1}{9}-\frac{1}{9}\left(\frac{1}{9}\right)^2+\frac{5}{81}\left(\frac{1}{9}\right)^3\right] \approx 3.1072,\\\\ &\ \ 误差|R_3|=3\cdot \left|\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)\left(\frac{1}{3}-3\right)}{4!}(1+\xi)^{\frac{1}{3}-4}\left(\frac{1}{9}\right)^4\right|,\xi介于0与\frac{1}{9}之间,即0 \lt \xi \lt \frac{1}{9},\\\\ &\ \ 则|R_3|=\left|\frac{80}{4!\cdot 3^{11}}\right| \approx 1.88 \times 10^{-5}\\\\ &\ \ (2)\ 因sin\ x \approx x-\frac{x^3}{3!},R_4(x)=\frac{sin\left(\xi+\frac{5\pi}{2}\right)}{5!}x^5,\xi介于0与\frac{\pi}{10}之间,\\\\ &\ \ 所以,sin\ 18^{\circ}=sin\ \frac{\pi}{10} \approx \frac{\pi}{10}-\frac{1}{3!}\left(\frac{\pi}{10}\right)^3 \approx 0.309,|R_4| \le \frac{1}{5!}\left(\frac{\pi}{10}\right)^5 \approx 2.55 \times 10^{-5}. & \end{aligned} (1) 因为f(x)=31+x=(1+x)31≈1+31x+2!31(31−1)x2+3!31(31−1)(31−2)x3=1+31x−91x2+815x3, R3(x)=4!31(31−1)(31−2)(31−3)(1+ξ)31−4x4,其中ξ介于0与x之间。 所以,330=327+3=331+91≈3[1+31⋅91−91(91)2+815(91)3]≈3.1072, 误差∣R3∣=3⋅ 4!31(31−1)(31−2)(31−3)(1+ξ)31−4(91)4 ,ξ介于0与91之间,即0<ξ<91, 则∣R3∣= 4!⋅31180 ≈1.88×10−5 (2) 因sin x≈x−3!x3,R4(x)=5!sin(ξ+25π)x5,ξ介于0与10π之间, 所以,sin 18∘=sin 10π≈10π−3!1(10π)3≈0.309,∣R4∣≤5!1(10π)5≈2.55×10−5.
10. 利用泰勒公式求下列极限: \begin{aligned}&10. \ 利用泰勒公式求下列极限:&\end{aligned} 10. 利用泰勒公式求下列极限:
( 1 ) lim x → + ∞ ( x 3 + 3 x 2 3 − x 4 − 2 x 3 4 ) ; ( 2 ) lim x → 0 c o s x − e − x 2 2 x 2 [ x + l n ( 1 − x ) ] ; ( 3 ) lim x → 0 1 + 1 2 x 2 − 1 + x 2 ( c o s x − e x 2 ) s i n x 2 ; ( 4 ) lim x → ∞ [ x − x 2 l n ( 1 + 1 x ) ] \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow +\infty}(\sqrt[3]{x^3+3x^2}-\sqrt[4]{x^4-2x^3});\ \ \ \ \ \ (2)\ \ \lim_{x \rightarrow 0}\frac{cos\ x-e^{-\frac{x^2}{2}}}{x^2[x+ln(1-x)]};\\\\ &\ \ (3)\ \ \lim_{x \rightarrow 0}\frac{1+\frac{1}{2}x^2-\sqrt{1+x^2}}{(cos\ x-e^{x^2})sin\ x^2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow \infty}\left[x-x^2ln\left(1+\frac{1}{x}\right)\right] & \end{aligned} (1) x→+∞lim(3x3+3x2−4x4−2x3); (2) x→0limx2[x+ln(1−x)]cos x−e−2x2; (3) x→0lim(cos x−ex2)sin x21+21x2−1+x2; (4) x→∞lim[x−x2ln(1+x1)]
解:
( 1 ) lim x → + ∞ ( x 3 + 3 x 2 3 − x 4 − 2 x 3 4 ) = lim x → + ∞ x [ ( 1 + 3 x ) 1 3 − ( 1 − 2 x ) 1 4 ] = lim x → + ∞ x [ 1 + 1 3 ⋅ 3 x + o ( 1 x ) − 1 + 1 4 ⋅ 2 x + o ( 1 x ) ] = lim x → + ∞ [ 3 2 + o ( 1 x ) 1 x ] = 3 2 ( 2 ) lim x → 0 c o s x − e − x 2 2 x 2 [ x + l n ( 1 − x ) ] = lim x → 0 1 − x 2 2 + x 4 4 ! + o ( x 4 ) − 1 − ( − x 2 2 ) − 1 2 ( − x 2 2 ) 2 + o ( x 4 ) x 2 [ x + ( − x − 1 2 x 2 + o ( x 2 ) ) ] = lim x → 0 ( 1 4 ! − 1 8 ) x 4 + o ( x 4 ) − 1 2 x 4 + o ( x 4 ) = lim x → 0 − 1 12 + o ( x 4 ) x 4 − 1 2 + o ( x 4 ) x 4 = − 1 12 − 1 2 = 1 6 ( 3 ) lim x → 0 1 + 1 2 x 2 − 1 + x 2 ( c o s x − e x 2 ) s i n x 2 = lim x → 0 1 + 1 2 x 2 − ( 1 + 1 2 x 2 − 1 8 x 4 + o ( x 4 ) ) [ 1 − 1 2 x 2 + o ( x 2 ) − 1 − x 2 + o ( x 2 ) ] [ x 2 + o ( x 2 ) ] = lim x → 0 1 8 x 4 + o ( x 4 ) − 3 2 x 4 + o ( x 4 ) = lim x → 0 1 8 + o ( x 4 ) x 4 − 3 2 + o ( x 4 ) x 4 = 1 8 − 3 2 = − 1 12 ( 4 ) lim x → ∞ [ x − x 2 l n ( 1 + 1 x ) ] = lim x → ∞ [ x − x 2 ( 1 x − 1 2 ⋅ 1 x 2 + o ( 1 x 2 ) ) ] = lim x → ∞ [ x − x + 1 2 + o ( 1 x 2 ) 1 x 2 ] = 1 2 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow +\infty}(\sqrt[3]{x^3+3x^2}-\sqrt[4]{x^4-2x^3})=\lim_{x \rightarrow +\infty}x\left[\left(1+\frac{3}{x}\right)^{\frac{1}{3}}-\left(1-\frac{2}{x}\right)^{\frac{1}{4}}\right]=\\\\ &\ \ \lim_{x \rightarrow +\infty}x\left[1+\frac{1}{3}\cdot \frac{3}{x}+o\left(\frac{1}{x}\right)-1+\frac{1}{4}\cdot \frac{2}{x}+o\left(\frac{1}{x}\right)\right]=\lim_{x \rightarrow +\infty}\left[\frac{3}{2}+\frac{o\left(\frac{1}{x}\right)}{\frac{1}{x}}\right]=\frac{3}{2}\\\\ &\ \ (2)\ \lim_{x \rightarrow 0}\frac{cos\ x-e^{-\frac{x^2}{2}}}{x^2[x+ln(1-x)]}=\lim_{x \rightarrow 0}\frac{1-\frac{x^2}{2}+\frac{x^4}{4!}+o(x^4)-1-\left(-\frac{x^2}{2}\right)-\frac{1}{2}\left(-\frac{x^2}{2}\right)^2+o(x^4)}{x^2\left[x+\left(-x-\frac{1}{2}x^2+o(x^2)\right)\right]}=\\\\ &\ \ \lim_{x \rightarrow 0}\frac{\left(\frac{1}{4!}-\frac{1}{8}\right)x^4+o(x^4)}{-\frac{1}{2}x^4+o(x^4)}=\lim_{x \rightarrow 0}\frac{-\frac{1}{12}+\frac{o(x^4)}{x^4}}{-\frac{1}{2}+\frac{o(x^4)}{x^4}}=\frac{-\frac{1}{12}}{-\frac{1}{2}}=\frac{1}{6}\\\\ &\ \ (3)\ \lim_{x \rightarrow 0}\frac{1+\frac{1}{2}x^2-\sqrt{1+x^2}}{(cos\ x-e^{x^2})sin\ x^2}=\lim_{x \rightarrow 0}\frac{1+\frac{1}{2}x^2-\left(1+\frac{1}{2}x^2-\frac{1}{8}x^4+o(x^4)\right)}{\left[1-\frac{1}{2}x^2+o(x^2)-1-x^2+o(x^2)\right][x^2+o(x^2)]}=\\\\ &\ \ \lim_{x \rightarrow 0}\frac{\frac{1}{8}x^4+o(x^4)}{-\frac{3}{2}x^4+o(x^4)}=\lim_{x \rightarrow 0}\frac{\frac{1}{8}+\frac{o(x^4)}{x^4}}{-\frac{3}{2}+\frac{o(x^4)}{x^4}}=\frac{\frac{1}{8}}{-\frac{3}{2}}=-\frac{1}{12}\\\\ &\ \ (4)\ \lim_{x \rightarrow \infty}\left[x-x^2ln\left(1+\frac{1}{x}\right)\right]=\lim_{x \rightarrow \infty}\left[x-x^2\left(\frac{1}{x}-\frac{1}{2}\cdot \frac{1}{x^2}+o\left(\frac{1}{x^2}\right)\right)\right]=\\\\ &\ \ \lim_{x \rightarrow \infty}\left[x-x+\frac{1}{2}+\frac{o\left(\frac{1}{x^2}\right)}{\frac{1}{x^2}}\right]=\frac{1}{2} & \end{aligned} (1) x→+∞lim(3x3+3x2−4x4−2x3)=x→+∞limx[(1+x3)31−(1−x2)41]= x→+∞limx[1+31⋅x3+o(x1)−1+41⋅x2+o(x1)]=x→+∞lim[23+x1o(x1)]=23 (2) x→0limx2[x+ln(1−x)]cos x−e−2x2=x→0limx2[x+(−x−21x2+o(x2))]1−2x2+4!x4+o(x4)−1−(−2x2)−21(−2x2)2+o(x4)= x→0lim−21x4+o(x4)(4!1−81)x4+o(x4)=x→0lim−21+x4o(x4)−121+x4o(x4)=−21−121=61 (3) x→0lim(cos x−ex2)sin x21+21x2−1+x2=x→0lim[1−21x2+o(x2)−1−x2+o(x2)][x2+o(x2)]1+21x2−(1+21x2−81x4+o(x4))= x→0lim−23x4+o(x4)81x4+o(x4)=x→0lim−23+x4o(x4)81+x4o(x4)=−2381=−121 (4) x→∞lim[x−x2ln(1+x1)]=x→∞lim[x−x2(x1−21⋅x21+o(x21))]= x→∞lim[x−x+21+x21o(x21)]=21