高等数学(第七版)同济大学 习题3-3 个人解答

高等数学(第七版)同济大学 习题3-3

 

1.  按 ( x − 4 ) 的幂展开多项式 f ( x ) = x 4 − 5 x 3 + x 2 − 3 x + 4. \begin{aligned}&1. \ 按(x-4)的幂展开多项式f(x)=x^4-5x^3+x^2-3x+4.&\end{aligned} 1. (x4)的幂展开多项式f(x)=x45x3+x23x+4.
解:

  因为 f ′ ( x ) = 4 x 3 − 15 x 2 + 2 x − 3 , f ′ ′ ( x ) = 12 x 2 − 30 x + 2 , f ′ ′ ′ ( x ) = 24 x − 30 , f ( 4 ) ( x ) = 24 , f ( n ) ( x ) = 0. ( n ≥ 5 )    f ( 4 ) = − 56 , f ′ ( 4 ) = 21 , f ′ ′ ( 4 ) = 74 , f ′ ′ ′ ( 4 ) = 66 , f ( 4 ) ( 4 ) = 24 ,   所以 x 4 − 5 x 3 + x 2 − 3 x + 4 = f ( 4 ) + f ′ ( 4 ) ( x − 4 ) + f ′ ′ ( 4 ) 2 ! ( x − 4 ) 2 + f ′ ′ ′ ( 4 ) 3 ! ( x − 4 ) 3 + f ( 4 ) ( 4 ) 4 ! ( x − 4 ) 4 =    − 56 + 21 ( x − 4 ) + 37 ( x − 4 ) 2 + 11 ( x − 4 ) 3 + ( x − 4 ) 4 \begin{aligned} &\ \ 因为f'(x)=4x^3-15x^2+2x-3,f''(x)=12x^2-30x+2,f'''(x)=24x-30,f^{(4)}(x)=24,f^{(n)}(x)=0.(n \ge 5)\\\\ &\ \ f(4)=-56,f'(4)=21,f''(4)=74,f'''(4)=66,f^{(4)}(4)=24,\\\\ &\ \ 所以x^4-5x^3+x^2-3x+4=f(4)+f'(4)(x-4)+\frac{f''(4)}{2!}(x-4)^2+\frac{f'''(4)}{3!}(x-4)^3+\frac{f^{(4)}(4)}{4!}(x-4)^4=\\\\ &\ \ -56+21(x-4)+37(x-4)^2+11(x-4)^3+(x-4)^4 & \end{aligned}   因为f(x)=4x315x2+2x3f′′(x)=12x230x+2f′′′(x)=24x30f(4)(x)=24f(n)(x)=0.(n5)  f(4)=56f(4)=21f′′(4)=74f′′′(4)=66f(4)(4)=24  所以x45x3+x23x+4=f(4)+f(4)(x4)+2!f′′(4)(x4)2+3!f′′′(4)(x4)3+4!f(4)(4)(x4)4=  56+21(x4)+37(x4)2+11(x4)3+(x4)4


2.  应用麦克劳林公式,按 x 的幂展开函数 f ( x ) = ( x 2 − 3 x + 1 ) 3 . \begin{aligned}&2. \ 应用麦克劳林公式,按x的幂展开函数f(x)=(x^2-3x+1)^3.&\end{aligned} 2. 应用麦克劳林公式,按x的幂展开函数f(x)=(x23x+1)3.
解:

  因为 f ( x ) = x 6 − 9 x 5 + 30 x 4 − 45 x 3 + 30 x 2 − 9 x + 1 , f ′ ( x ) = 6 x 5 − 45 x 4 + 120 x 3 − 135 x 2 + 60 x − 9 ,    f ′ ′ ( x ) = 30 x 4 − 180 x 3 + 360 x 2 − 270 x + 60 , f ′ ′ ′ ( x ) = 120 x 3 − 540 x 2 + 720 x − 270 , f ( 4 ) ( x ) = 360 x 2 − 1080 x + 720 ,    f ( 5 ) ( x ) = 720 x − 1080 , f ( 6 ) ( x ) = 720 , f ( n ) ( x ) = 0.   ( n ≥ 7 ) ,    f ( 0 ) = 1 , f ′ ( 0 ) = − 9 , f ′ ′ ( 0 ) = 60 , f ′ ′ ′ ( 0 ) = − 270 , f ( 4 ) ( 0 ) = 720 , f ( 5 ) ( 0 ) = − 1080 , f ( 6 ) ( 0 ) = 720 ,   所以, ( x 2 − 3 x + 1 ) 3 = f ( 0 ) + f " ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + f ( 4 ) ( 0 ) 4 ! x 4 + f ( 5 ) ( 0 ) 5 ! x 5 + f ( 6 ) ( 0 ) 6 ! x 6 =    1 − 9 x + 30 x 2 − 45 x 3 + 30 x 4 − 9 x 5 + x 6 . \begin{aligned} &\ \ 因为f(x)=x^6-9x^5+30x^4-45x^3+30x^2-9x+1,f'(x)=6x^5-45x^4+120x^3-135x^2+60x-9,\\\\ &\ \ f''(x)=30x^4-180x^3+360x^2-270x+60,f'''(x)=120x^3-540x^2+720x-270,f^{(4)}(x)=360x^2-1080x+720,\\\\ &\ \ f^{(5)}(x)=720x-1080,f^{(6)}(x)=720,f^{(n)}(x)=0.\ (n \ge 7),\\\\ &\ \ f(0)=1,f'(0)=-9,f''(0)=60,f'''(0)=-270,f^{(4)}(0)=720,f^{(5)}(0)=-1080,f^{(6)}(0)=720,\\\\ &\ \ 所以,(x^2-3x+1)^3=f(0)+f"(0)x+\frac{f''(0)}{2!}x^2+\frac{f'''(0)}{3!}x^3+\frac{f^{(4)}(0)}{4!}x^4+\frac{f^{(5)}(0)}{5!}x^5+\frac{f^{(6)}(0)}{6!}x^6=\\\\ &\ \ 1-9x+30x^2-45x^3+30x^4-9x^5+x^6. & \end{aligned}   因为f(x)=x69x5+30x445x3+30x29x+1f(x)=6x545x4+120x3135x2+60x9  f′′(x)=30x4180x3+360x2270x+60f′′′(x)=120x3540x2+720x270f(4)(x)=360x21080x+720  f(5)(x)=720x1080f(6)(x)=720f(n)(x)=0. (n7)  f(0)=1f(0)=9f′′(0)=60f′′′(0)=270f(4)(0)=720f(5)(0)=1080f(6)(0)=720  所以,(x23x+1)3=f(0)+f"(0)x+2!f′′(0)x2+3!f′′′(0)x3+4!f(4)(0)x4+5!f(5)(0)x5+6!f(6)(0)x6=  19x+30x245x3+30x49x5+x6.


3.  求函数 f ( x ) = x 按 ( x − 4 ) 的幂展开的带有拉格朗日余项的 3 阶泰勒公式 . \begin{aligned}&3. \ 求函数f(x)=\sqrt{x}按(x-4)的幂展开的带有拉格朗日余项的3阶泰勒公式.&\end{aligned} 3. 求函数f(x)=x (x4)的幂展开的带有拉格朗日余项的3阶泰勒公式.
解:

  因为 f ( x ) = x , f ′ ( x ) = 1 2 x − 1 2 , f ′ ′ ( x ) = − 1 4 x − 3 2 , f ′ ′ ′ ( x ) = 3 8 x − 5 2 , f ( 4 ) ( x ) = − 15 16 x − 7 2    f ( 4 ) = 2 , f ′ ( 4 ) = 1 4 , f ′ ′ ( 4 ) = − 1 32 , f ′ ′ ′ ( 4 ) = 3 256 .   所以 x = f ( 4 ) + f ′ ( 4 ) ( x − 4 ) + f ′ ′ ( 4 ) 2 ! ( x − 4 ) 2 + f ′ ′ ′ ( 4 ) 3 ! ( x − 4 ) 3 + f ( 4 ) ( ξ ) 4 ! ( x − 4 ) 4 =    2 + 1 4 ( x − 4 ) − 1 64 ( x − 4 ) 2 + 1 512 ( x − 4 ) 3 − 15 384 ξ 7 2 ( x − 4 ) 4 ,其中 ξ 介于 x 与 4 之间。 \begin{aligned} &\ \ 因为f(x)=\sqrt{x},f'(x)=\frac{1}{2}x^{-\frac{1}{2}},f''(x)=-\frac{1}{4}x^{-\frac{3}{2}},f'''(x)=\frac{3}{8}x^{-\frac{5}{2}},f^{(4)}(x)=-\frac{15}{16}x^{-\frac{7}{2}}\\\\ &\ \ f(4)=2,f'(4)=\frac{1}{4},f''(4)=-\frac{1}{32},f'''(4)=\frac{3}{256}.\\\\ &\ \ 所以\sqrt{x}=f(4)+f'(4)(x-4)+\frac{f''(4)}{2!}(x-4)^2+\frac{f'''(4)}{3!}(x-4)^3+\frac{f^{(4)}(\xi)}{4!}(x-4)^4=\\\\ &\ \ 2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^2+\frac{1}{512}(x-4)^3-\frac{15}{384\xi^{\frac{7}{2}}}(x-4)^4,其中\xi介于x与4之间。 & \end{aligned}   因为f(x)=x f(x)=21x21f′′(x)=41x23f′′′(x)=83x25f(4)(x)=1615x27  f(4)=2f(4)=41f′′(4)=321f′′′(4)=2563.  所以x =f(4)+f(4)(x4)+2!f′′(4)(x4)2+3!f′′′(4)(x4)3+4!f(4)(ξ)(x4)4=  2+41(x4)641(x4)2+5121(x4)3384ξ2715(x4)4,其中ξ介于x4之间。


4.  求函数 f ( x ) = l n   x 按 ( x − 2 ) 的幂展开的带有佩亚诺余项的 n 阶泰勒公式 . \begin{aligned}&4. \ 求函数f(x)=ln\ x按(x-2)的幂展开的带有佩亚诺余项的n阶泰勒公式.&\end{aligned} 4. 求函数f(x)=ln x(x2)的幂展开的带有佩亚诺余项的n阶泰勒公式.
解:

  因为 f ( x ) = l n   x , f ′ ( x ) = 1 x , f ′ ′ ( x ) = − 1 x 2 , f ′ ′ ′ ( x ) = 2 x 3 , f ( 4 ) ( x ) = − 6 x 4 ,    f ( n ) ( x ) = ( − 1 ) n − 1 ( n − 1 ) ! x n , f ( n ) ( 2 ) = ( − 1 ) n − 1 ( n − 1 ) ! 2 n   所以 l n   x = f ( 2 ) + f ′ ( 2 ) ( x − 2 ) + f ′ ′ ( 2 ) 2 ! ( x − 2 ) 2 + f ′ ′ ′ ( 2 ) 3 ! ( x − 2 ) 3 + ⋅ ⋅ ⋅ + f ( n ) ( 2 ) n ! ( x − 2 ) n + o [ ( x − 2 ) n ] =    l n   2 + 1 2 ( x − 2 ) − 1 2 3 ( x − 2 ) 2 + 1 3 ⋅ 2 3 ( x − 2 ) 3 + ⋅ ⋅ ⋅ + ( − 1 ) n − 1 1 n ⋅ 2 n ( x − 2 ) n + o [ ( x − 2 ) n ] \begin{aligned} &\ \ 因为f(x)=ln\ x,f'(x)=\frac{1}{x},f''(x)=-\frac{1}{x^2},f'''(x)=\frac{2}{x^3},f^{(4)}(x)=-\frac{6}{x^4},\\\\ &\ \ f^{(n)}(x)=\frac{(-1)^{n-1}(n-1)!}{x^n},f^{(n)}(2)=\frac{(-1)^{n-1}(n-1)!}{2^n}\\\\ &\ \ 所以ln\ x=f(2)+f'(2)(x-2)+\frac{f''(2)}{2!}(x-2)^2+\frac{f'''(2)}{3!}(x-2)^3+\cdot\cdot\cdot+\frac{f^{(n)}(2)}{n!}(x-2)^n+o[(x-2)^n]=\\\\ &\ \ ln\ 2+\frac{1}{2}(x-2)-\frac{1}{2^3}(x-2)^2+\frac{1}{3\cdot 2^3}(x-2)^3+\cdot\cdot\cdot+(-1)^{n-1}\frac{1}{n\cdot2^n}(x-2)^n+o[(x-2)^n] & \end{aligned}   因为f(x)=ln xf(x)=x1f′′(x)=x21f′′′(x)=x32f(4)(x)=x46  f(n)(x)=xn(1)n1(n1)!f(n)(2)=2n(1)n1(n1)!  所以ln x=f(2)+f(2)(x2)+2!f′′(2)(x2)2+3!f′′′(2)(x2)3++n!f(n)(2)(x2)n+o[(x2)n]=  ln 2+21(x2)231(x2)2+3231(x2)3++(1)n1n2n1(x2)n+o[(x2)n]


5.  求函数 f ( x ) = 1 x 按 ( x + 1 ) 的幂展开的带有拉格朗日余项的 n 阶泰勒公式 . \begin{aligned}&5. \ 求函数f(x)=\frac{1}{x}按(x+1)的幂展开的带有拉格朗日余项的n阶泰勒公式.&\end{aligned} 5. 求函数f(x)=x1(x+1)的幂展开的带有拉格朗日余项的n阶泰勒公式.
解:

  因为 f ( x ) = 1 x , f ′ ( x ) = − 1 x 2 , f ′ ′ ( x ) = 2 x 3 , f ′ ′ ′ ( x ) = − 6 x 4 , f ( 4 ) ( x ) = 24 x 5 ,    f ( n ) ( x ) = ( − 1 ) n n ! x n + 1 , f ( n ) ( − 1 ) = − n ! ,    1 x = f ( − 1 ) + f ′ ( − 1 ) ( x + 1 ) + f ′ ′ ( − 1 ) 2 ! ( x + 1 ) 2 + f ′ ′ ′ ( − 1 ) 3 ! ( x + 1 ) 3 + ⋅ ⋅ ⋅ + f ( n ) ( − 1 ) n ! ( x + 1 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x + 1 ) n + 1 =    − [ 1 + ( x + 1 ) + ( x + 1 ) 2 + ⋅ ⋅ ⋅ + ( x + 1 ) n ] + ( − 1 ) n + 1 ξ − ( n + 2 ) ( x + 1 ) n + 1 ,其中 ξ 介于 x 与 − 1 之间。 \begin{aligned} &\ \ 因为f(x)=\frac{1}{x},f'(x)=-\frac{1}{x^2},f''(x)=\frac{2}{x^3},f'''(x)=-\frac{6}{x^4},f^{(4)}(x)=\frac{24}{x^5},\\\\ &\ \ f^{(n)}(x)=\frac{(-1)^nn!}{x^{n+1}},f^{(n)}(-1)=-n!,\\\\ &\ \ \frac{1}{x}=f(-1)+f'(-1)(x+1)+\frac{f''(-1)}{2!}(x+1)^2+\frac{f'''(-1)}{3!}(x+1)^3+\cdot\cdot\cdot+\frac{f^{(n)}(-1)}{n!}(x+1)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x+1)^{n+1}=\\\\ &\ \ -[1+(x+1)+(x+1)^2+\cdot\cdot\cdot+(x+1)^n]+(-1)^{n+1}\xi^{-(n+2)}(x+1)^{n+1},其中\xi介于x与-1之间。 & \end{aligned}   因为f(x)=x1f(x)=x21f′′(x)=x32f′′′(x)=x46f(4)(x)=x524  f(n)(x)=xn+1(1)nn!f(n)(1)=n!  x1=f(1)+f(1)(x+1)+2!f′′(1)(x+1)2+3!f′′′(1)(x+1)3++n!f(n)(1)(x+1)n+(n+1)!f(n+1)(ξ)(x+1)n+1=  [1+(x+1)+(x+1)2++(x+1)n]+(1)n+1ξ(n+2)(x+1)n+1,其中ξ介于x1之间。


6.  求函数 f ( x ) = t a n   x 的带有佩亚诺余项的 3 阶麦克劳林公式 . \begin{aligned}&6. \ 求函数f(x)=tan\ x的带有佩亚诺余项的3阶麦克劳林公式.&\end{aligned} 6. 求函数f(x)=tan x的带有佩亚诺余项的3阶麦克劳林公式.
解:

  因为 f ( x ) = t a n   x , f ′ ( x ) = s e c 2   x , f ′ ′ ( x ) = 2 s e c 2   x t a n   x , f ′ ′ ′ ( x ) = 4 s e c 2   x t a n 2   x + 2 s e c 4   x ,    f ( 4 ) ( x ) = 8 s e c 2   x t a n 3   x + 8 s e c 4   x t a n   x + 8 s e c 4   x t a n   x = 8 s i n 3   x + 16 s i n   x c o s 5   x    f ( 0 ) = 0 , f ′ ( 0 ) = 1 , f ′ ′ ( 0 ) = 0 , f ′ ′ ′ ( 0 ) = 2 ,所以 f ( x ) = x + x 3 3 + o ( x 3 ) . \begin{aligned} &\ \ 因为f(x)=tan\ x,f'(x)=sec^2\ x,f''(x)=2sec^2\ xtan\ x,f'''(x)=4sec^2\ xtan^2\ x+2sec^4\ x,\\\\ &\ \ f^{(4)}(x)=8sec^2\ xtan^3\ x+8sec^4\ xtan\ x+8sec^4\ xtan\ x=\frac{8sin^3\ x+16sin\ x}{cos^5\ x}\\\\ &\ \ f(0)=0,f'(0)=1,f''(0)=0,f'''(0)=2,所以f(x)=x+\frac{x^3}{3}+o(x^3). & \end{aligned}   因为f(x)=tan xf(x)=sec2 xf′′(x)=2sec2 xtan xf′′′(x)=4sec2 xtan2 x+2sec4 x  f(4)(x)=8sec2 xtan3 x+8sec4 xtan x+8sec4 xtan x=cos5 x8sin3 x+16sin x  f(0)=0f(0)=1f′′(0)=0f′′′(0)=2,所以f(x)=x+3x3+o(x3).


7.  求函数 f ( x ) = x e x 的带有佩亚诺余项的 n 阶麦克劳林公式 . \begin{aligned}&7. \ 求函数f(x)=xe^x的带有佩亚诺余项的n阶麦克劳林公式.&\end{aligned} 7. 求函数f(x)=xex的带有佩亚诺余项的n阶麦克劳林公式.
解:

  因为 f ( x ) = x e x , f ( n ) ( x ) = ( n + x ) e x , f ( n ) ( 0 ) = n ,所以 x e x = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋅ ⋅ ⋅ + 1 n ! f ( n ) ( 0 ) x n + o ( x n ) =    x + x 2 + 1 2 ! x 3 + ⋅ ⋅ ⋅ + x n ( n − 1 ) ! + o ( x n ) . \begin{aligned} &\ \ 因为f(x)=xe^x,f^{(n)}(x)=(n+x)e^x,f^{(n)}(0)=n,所以xe^x=f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2+\cdot\cdot\cdot+\frac{1}{n!}f^{(n)}(0)x^n+o(x^n)=\\\\ &\ \ x+x^2+\frac{1}{2!}x^3+\cdot\cdot\cdot+\frac{x^n}{(n-1)!}+o(x^n). & \end{aligned}   因为f(x)=xexf(n)(x)=(n+x)exf(n)(0)=n,所以xex=f(0)+f(0)x+2!1f′′(0)x2++n!1f(n)(0)xn+o(xn)=  x+x2+2!1x3++(n1)!xn+o(xn).


8.  验证当 0 < x ≤ 1 2 时,按公式 e x ≈ 1 + x + x 2 2 + x 3 6 计算 e x 的近似值时,所产生的误差小于 0.01 ,     并求 e 的近似值,使误差小于 0.01. \begin{aligned}&8. \ 验证当0 \lt x \le \frac{1}{2}时,按公式e^x \approx 1+x+\frac{x^2}{2}+\frac{x^3}{6}计算e^x的近似值时,所产生的误差小于0.01,\\\\&\ \ \ \ 并求\sqrt{e}的近似值,使误差小于0.01.&\end{aligned} 8. 验证当0<x21时,按公式ex1+x+2x2+6x3计算ex的近似值时,所产生的误差小于0.01    并求e 的近似值,使误差小于0.01.
解:

  设 f ( x ) = e x , f ( n ) ( 0 ) = 1 ,   所以, e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + e ξ 4 ! x 4 ,其中 ξ 介于 0 与 x 之间,按公式 e x ≈ 1 + x + x 2 2 + x 3 6 计算 e x 的近似值时,   其误差为 ∣ R 3 ( x ) ∣ = e ξ 4 ! x 4 . 当 0 < x ≤ 1 2 时, 0 < ξ < 1 2 , ∣ R 3 ( x ) ∣ ≤ 3 1 2 4 ! ( 1 2 ) 4 ≈ 0.0045 < 0.01    e ≈ 1 + 1 2 + 1 2 ( 1 2 ) 2 + 1 6 ( 1 2 ) 3 ≈ 1.645. \begin{aligned} &\ \ 设f(x)=e^x,f^{(n)}(0)=1,\\\\ &\ \ 所以,e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\frac{e^{\xi}}{4!}x^4,其中\xi介于0与x之间,按公式e^x \approx 1+x+\frac{x^2}{2}+\frac{x^3}{6}计算e^x的近似值时,\\\\ &\ \ 其误差为|R_3(x)|=\frac{e^{\xi}}{4!}x^4.当0 \lt x \le \frac{1}{2}时,0 \lt \xi \lt \frac{1}{2},|R_3(x)| \le \frac{3^{\frac{1}{2}}}{4!}\left(\frac{1}{2}\right)^4 \approx 0.0045 \lt 0.01\\\\ &\ \ \sqrt{e} \approx 1+\frac{1}{2}+\frac{1}{2}\left(\frac{1}{2}\right)^2+\frac{1}{6}\left(\frac{1}{2}\right)^3 \approx 1.645. & \end{aligned}   f(x)=exf(n)(0)=1  所以,ex=1+x+2!1x2+3!1x3+4!eξx4,其中ξ介于0x之间,按公式ex1+x+2x2+6x3计算ex的近似值时,  其误差为R3(x)=4!eξx4.0<x21时,0<ξ<21R3(x)4!321(21)40.0045<0.01  e 1+21+21(21)2+61(21)31.645.


9.  应用 3 阶泰勒公式求下列各数的近似值,并估计误差: \begin{aligned}&9. \ 应用3阶泰勒公式求下列各数的近似值,并估计误差:&\end{aligned} 9. 应用3阶泰勒公式求下列各数的近似值,并估计误差:

   ( 1 )    30 3 ;                                                ( 2 )    s i n   1 8 ∘ \begin{aligned} &\ \ (1)\ \ \sqrt[3]{30};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ sin\ 18^{\circ} & \end{aligned}   (1)  330                                                (2)  sin 18

解:

   ( 1 )  因为 f ( x ) = 1 + x 3 = ( 1 + x ) 1 3 ≈ 1 + 1 3 x + 1 3 ( 1 3 − 1 ) 2 ! x 2 + 1 3 ( 1 3 − 1 ) ( 1 3 − 2 ) 3 ! x 3 = 1 + 1 3 x − 1 9 x 2 + 5 81 x 3 ,    R 3 ( x ) = 1 3 ( 1 3 − 1 ) ( 1 3 − 2 ) ( 1 3 − 3 ) 4 ! ( 1 + ξ ) 1 3 − 4 x 4 ,其中 ξ 介于 0 与 x 之间。   所以, 30 3 = 27 + 3 3 = 3 1 + 1 9 3 ≈ 3 [ 1 + 1 3 ⋅ 1 9 − 1 9 ( 1 9 ) 2 + 5 81 ( 1 9 ) 3 ] ≈ 3.1072 ,   误差 ∣ R 3 ∣ = 3 ⋅ ∣ 1 3 ( 1 3 − 1 ) ( 1 3 − 2 ) ( 1 3 − 3 ) 4 ! ( 1 + ξ ) 1 3 − 4 ( 1 9 ) 4 ∣ , ξ 介于 0 与 1 9 之间,即 0 < ξ < 1 9 ,   则 ∣ R 3 ∣ = ∣ 80 4 ! ⋅ 3 11 ∣ ≈ 1.88 × 1 0 − 5    ( 2 )  因 s i n   x ≈ x − x 3 3 ! , R 4 ( x ) = s i n ( ξ + 5 π 2 ) 5 ! x 5 , ξ 介于 0 与 π 10 之间,   所以, s i n   1 8 ∘ = s i n   π 10 ≈ π 10 − 1 3 ! ( π 10 ) 3 ≈ 0.309 , ∣ R 4 ∣ ≤ 1 5 ! ( π 10 ) 5 ≈ 2.55 × 1 0 − 5 . \begin{aligned} &\ \ (1)\ 因为f(x)=\sqrt[3]{1+x}=(1+x)^{\frac{1}{3}} \approx 1+\frac{1}{3}x+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{2!}x^2+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!}x^3=1+\frac{1}{3}x-\frac{1}{9}x^2+\frac{5}{81}x^3,\\\\ &\ \ R_3(x)=\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)\left(\frac{1}{3}-3\right)}{4!}(1+\xi)^{\frac{1}{3}-4}x^4,其中\xi介于0与x之间。\\\\ &\ \ 所以,\sqrt[3]{30}=\sqrt[3]{27+3}=3\sqrt[3]{1+\frac{1}{9}} \approx 3\left[1+\frac{1}{3}\cdot \frac{1}{9}-\frac{1}{9}\left(\frac{1}{9}\right)^2+\frac{5}{81}\left(\frac{1}{9}\right)^3\right] \approx 3.1072,\\\\ &\ \ 误差|R_3|=3\cdot \left|\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)\left(\frac{1}{3}-3\right)}{4!}(1+\xi)^{\frac{1}{3}-4}\left(\frac{1}{9}\right)^4\right|,\xi介于0与\frac{1}{9}之间,即0 \lt \xi \lt \frac{1}{9},\\\\ &\ \ 则|R_3|=\left|\frac{80}{4!\cdot 3^{11}}\right| \approx 1.88 \times 10^{-5}\\\\ &\ \ (2)\ 因sin\ x \approx x-\frac{x^3}{3!},R_4(x)=\frac{sin\left(\xi+\frac{5\pi}{2}\right)}{5!}x^5,\xi介于0与\frac{\pi}{10}之间,\\\\ &\ \ 所以,sin\ 18^{\circ}=sin\ \frac{\pi}{10} \approx \frac{\pi}{10}-\frac{1}{3!}\left(\frac{\pi}{10}\right)^3 \approx 0.309,|R_4| \le \frac{1}{5!}\left(\frac{\pi}{10}\right)^5 \approx 2.55 \times 10^{-5}. & \end{aligned}   (1) 因为f(x)=31+x =(1+x)311+31x+2!31(311)x2+3!31(311)(312)x3=1+31x91x2+815x3  R3(x)=4!31(311)(312)(313)(1+ξ)314x4,其中ξ介于0x之间。  所以,330 =327+3 =331+91 3[1+319191(91)2+815(91)3]3.1072  误差R3=3 4!31(311)(312)(313)(1+ξ)314(91)4 ξ介于091之间,即0<ξ<91  R3= 4!31180 1.88×105  (2) sin xx3!x3R4(x)=5!sin(ξ+25π)x5ξ介于010π之间,  所以,sin 18=sin 10π10π3!1(10π)30.309R45!1(10π)52.55×105.


10.  利用泰勒公式求下列极限: \begin{aligned}&10. \ 利用泰勒公式求下列极限:&\end{aligned} 10. 利用泰勒公式求下列极限:

   ( 1 )    lim ⁡ x → + ∞ ( x 3 + 3 x 2 3 − x 4 − 2 x 3 4 ) ;       ( 2 )    lim ⁡ x → 0 c o s   x − e − x 2 2 x 2 [ x + l n ( 1 − x ) ] ;    ( 3 )    lim ⁡ x → 0 1 + 1 2 x 2 − 1 + x 2 ( c o s   x − e x 2 ) s i n   x 2 ;                      ( 4 )    lim ⁡ x → ∞ [ x − x 2 l n ( 1 + 1 x ) ] \begin{aligned} &\ \ (1)\ \ \lim_{x \rightarrow +\infty}(\sqrt[3]{x^3+3x^2}-\sqrt[4]{x^4-2x^3});\ \ \ \ \ \ (2)\ \ \lim_{x \rightarrow 0}\frac{cos\ x-e^{-\frac{x^2}{2}}}{x^2[x+ln(1-x)]};\\\\ &\ \ (3)\ \ \lim_{x \rightarrow 0}\frac{1+\frac{1}{2}x^2-\sqrt{1+x^2}}{(cos\ x-e^{x^2})sin\ x^2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ \lim_{x \rightarrow \infty}\left[x-x^2ln\left(1+\frac{1}{x}\right)\right] & \end{aligned}   (1)  x+lim(3x3+3x2 4x42x3 )      (2)  x0limx2[x+ln(1x)]cos xe2x2  (3)  x0lim(cos xex2)sin x21+21x21+x2                      (4)  xlim[xx2ln(1+x1)]

解:

   ( 1 )   lim ⁡ x → + ∞ ( x 3 + 3 x 2 3 − x 4 − 2 x 3 4 ) = lim ⁡ x → + ∞ x [ ( 1 + 3 x ) 1 3 − ( 1 − 2 x ) 1 4 ] =    lim ⁡ x → + ∞ x [ 1 + 1 3 ⋅ 3 x + o ( 1 x ) − 1 + 1 4 ⋅ 2 x + o ( 1 x ) ] = lim ⁡ x → + ∞ [ 3 2 + o ( 1 x ) 1 x ] = 3 2    ( 2 )   lim ⁡ x → 0 c o s   x − e − x 2 2 x 2 [ x + l n ( 1 − x ) ] = lim ⁡ x → 0 1 − x 2 2 + x 4 4 ! + o ( x 4 ) − 1 − ( − x 2 2 ) − 1 2 ( − x 2 2 ) 2 + o ( x 4 ) x 2 [ x + ( − x − 1 2 x 2 + o ( x 2 ) ) ] =    lim ⁡ x → 0 ( 1 4 ! − 1 8 ) x 4 + o ( x 4 ) − 1 2 x 4 + o ( x 4 ) = lim ⁡ x → 0 − 1 12 + o ( x 4 ) x 4 − 1 2 + o ( x 4 ) x 4 = − 1 12 − 1 2 = 1 6    ( 3 )   lim ⁡ x → 0 1 + 1 2 x 2 − 1 + x 2 ( c o s   x − e x 2 ) s i n   x 2 = lim ⁡ x → 0 1 + 1 2 x 2 − ( 1 + 1 2 x 2 − 1 8 x 4 + o ( x 4 ) ) [ 1 − 1 2 x 2 + o ( x 2 ) − 1 − x 2 + o ( x 2 ) ] [ x 2 + o ( x 2 ) ] =    lim ⁡ x → 0 1 8 x 4 + o ( x 4 ) − 3 2 x 4 + o ( x 4 ) = lim ⁡ x → 0 1 8 + o ( x 4 ) x 4 − 3 2 + o ( x 4 ) x 4 = 1 8 − 3 2 = − 1 12    ( 4 )   lim ⁡ x → ∞ [ x − x 2 l n ( 1 + 1 x ) ] = lim ⁡ x → ∞ [ x − x 2 ( 1 x − 1 2 ⋅ 1 x 2 + o ( 1 x 2 ) ) ] =    lim ⁡ x → ∞ [ x − x + 1 2 + o ( 1 x 2 ) 1 x 2 ] = 1 2 \begin{aligned} &\ \ (1)\ \lim_{x \rightarrow +\infty}(\sqrt[3]{x^3+3x^2}-\sqrt[4]{x^4-2x^3})=\lim_{x \rightarrow +\infty}x\left[\left(1+\frac{3}{x}\right)^{\frac{1}{3}}-\left(1-\frac{2}{x}\right)^{\frac{1}{4}}\right]=\\\\ &\ \ \lim_{x \rightarrow +\infty}x\left[1+\frac{1}{3}\cdot \frac{3}{x}+o\left(\frac{1}{x}\right)-1+\frac{1}{4}\cdot \frac{2}{x}+o\left(\frac{1}{x}\right)\right]=\lim_{x \rightarrow +\infty}\left[\frac{3}{2}+\frac{o\left(\frac{1}{x}\right)}{\frac{1}{x}}\right]=\frac{3}{2}\\\\ &\ \ (2)\ \lim_{x \rightarrow 0}\frac{cos\ x-e^{-\frac{x^2}{2}}}{x^2[x+ln(1-x)]}=\lim_{x \rightarrow 0}\frac{1-\frac{x^2}{2}+\frac{x^4}{4!}+o(x^4)-1-\left(-\frac{x^2}{2}\right)-\frac{1}{2}\left(-\frac{x^2}{2}\right)^2+o(x^4)}{x^2\left[x+\left(-x-\frac{1}{2}x^2+o(x^2)\right)\right]}=\\\\ &\ \ \lim_{x \rightarrow 0}\frac{\left(\frac{1}{4!}-\frac{1}{8}\right)x^4+o(x^4)}{-\frac{1}{2}x^4+o(x^4)}=\lim_{x \rightarrow 0}\frac{-\frac{1}{12}+\frac{o(x^4)}{x^4}}{-\frac{1}{2}+\frac{o(x^4)}{x^4}}=\frac{-\frac{1}{12}}{-\frac{1}{2}}=\frac{1}{6}\\\\ &\ \ (3)\ \lim_{x \rightarrow 0}\frac{1+\frac{1}{2}x^2-\sqrt{1+x^2}}{(cos\ x-e^{x^2})sin\ x^2}=\lim_{x \rightarrow 0}\frac{1+\frac{1}{2}x^2-\left(1+\frac{1}{2}x^2-\frac{1}{8}x^4+o(x^4)\right)}{\left[1-\frac{1}{2}x^2+o(x^2)-1-x^2+o(x^2)\right][x^2+o(x^2)]}=\\\\ &\ \ \lim_{x \rightarrow 0}\frac{\frac{1}{8}x^4+o(x^4)}{-\frac{3}{2}x^4+o(x^4)}=\lim_{x \rightarrow 0}\frac{\frac{1}{8}+\frac{o(x^4)}{x^4}}{-\frac{3}{2}+\frac{o(x^4)}{x^4}}=\frac{\frac{1}{8}}{-\frac{3}{2}}=-\frac{1}{12}\\\\ &\ \ (4)\ \lim_{x \rightarrow \infty}\left[x-x^2ln\left(1+\frac{1}{x}\right)\right]=\lim_{x \rightarrow \infty}\left[x-x^2\left(\frac{1}{x}-\frac{1}{2}\cdot \frac{1}{x^2}+o\left(\frac{1}{x^2}\right)\right)\right]=\\\\ &\ \ \lim_{x \rightarrow \infty}\left[x-x+\frac{1}{2}+\frac{o\left(\frac{1}{x^2}\right)}{\frac{1}{x^2}}\right]=\frac{1}{2} & \end{aligned}   (1) x+lim(3x3+3x2 4x42x3 )=x+limx[(1+x3)31(1x2)41]=  x+limx[1+31x3+o(x1)1+41x2+o(x1)]=x+lim[23+x1o(x1)]=23  (2) x0limx2[x+ln(1x)]cos xe2x2=x0limx2[x+(x21x2+o(x2))]12x2+4!x4+o(x4)1(2x2)21(2x2)2+o(x4)=  x0lim21x4+o(x4)(4!181)x4+o(x4)=x0lim21+x4o(x4)121+x4o(x4)=21121=61  (3) x0lim(cos xex2)sin x21+21x21+x2 =x0lim[121x2+o(x2)1x2+o(x2)][x2+o(x2)]1+21x2(1+21x281x4+o(x4))=  x0lim23x4+o(x4)81x4+o(x4)=x0lim23+x4o(x4)81+x4o(x4)=2381=121  (4) xlim[xx2ln(1+x1)]=xlim[xx2(x121x21+o(x21))]=  xlim[xx+21+x21o(x21)]=21

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值