高等数学(第七版)同济大学 习题4-4(后14题)
解:
( 11 ) ∫ d x ( x 2 + 1 ) ( x 2 + x + 1 ) = ∫ ( − x x 2 + 1 + x + 1 x 2 + x + 1 ) d x = − 1 2 l n ( x 2 + 1 ) + 1 2 ∫ 1 x 2 + x + 1 d ( x 2 + x + 1 ) + 1 2 ∫ 1 ( x + 1 2 ) 2 + 3 4 d x = − 1 2 l n ( x 2 + 1 ) + 1 2 l n ( x 2 + x + 1 ) + 1 3 a r c t a n 2 x + 1 3 + C ( 12 ) ∫ ( x + 1 ) 2 ( x 2 + 1 ) 2 d x = ∫ ( 1 1 + x 2 + 2 x ( x 2 + 1 ) 2 ) d x = ∫ 1 1 + x 2 d x + 2 ∫ x ( x 2 + 1 ) 2 d x = ∫ 1 1 + x 2 d x + ∫ 1 ( x 2 + 1 ) 2 d ( x 2 + 1 ) = a r c t a n x − 1 x 2 + 1 + C ( 13 ) ∫ − x 2 − 2 ( x 2 + x + 1 ) 2 d x = ∫ − x 2 − x − 1 + x − 1 ( x 2 + x + 1 ) 2 d x = − ∫ 1 x 2 + x + 1 d x + ∫ 2 x + 1 ( x 2 + x + 1 ) 2 d x − ∫ x + 2 ( x 2 + x + 1 ) 2 d x = − ∫ 1 x 2 + x + 1 d x + 1 2 ∫ 1 ( x 2 + x + 1 ) 2 d ( x 2 + x + 1 ) − 3 2 ∫ 1 ( x 2 + x + 1 ) 2 d x , 设 u = x + 1 2 , a = 3 2 ,得 ∫ 1 ( x 2 + x + 1 ) 2 d x = ∫ 1 ( u 2 + a 2 ) 2 d x = 1 2 a 3 [ a r c t a n u a + a u a 2 + u 2 ] + C = 2 3 a r c t a n 2 x + 1 3 + 1 2 ⋅ 2 x + 1 x 2 + x + 1 ,代入原式,得 − 2 3 a r c t a n 2 x + 1 3 − 1 2 ⋅ 1 x 2 + x + 1 − 2 3 a r c t a n 2 x + 1 3 − 1 2 ⋅ 2 x + 1 x 2 + x + 1 + C = − 4 3 a r c t a n 2 x + 1 3 − x + 1 x 2 + x + 1 + C ( 14 ) ∫ d x 3 + s i n 2 x = − ∫ c s c 2 x 3 c s c 2 x + 1 d x = − 1 3 c o t 2 x + 4 d ( c o t x ) ,令 u = c o t x ,得 − ∫ 1 3 u 2 + 4 d u = − 1 2 3 a r c t a n 3 u 2 + C = − 1 2 3 a r c t a n 3 c o t x 2 + C ( 15 ) 设 u = t a n x 2 ,则 x = 2 a r c t a n u , d x = 2 1 + u 2 d u ,得 ∫ d x 3 + c o s x = ∫ 1 3 + 1 − u 2 1 + u 2 ⋅ 2 1 + u 2 d u = ∫ 1 2 + u 2 d u = 1 2 a r c t a n u 2 + C = 1 2 a r c t a n t a n x 2 2 + C ( 16 ) 设 u = t a n x 2 ,则 x = 2 a r c t a n u , d x = 2 1 + u 2 d u ,得 ∫ d x 2 + s i n x = ∫ 1 2 + 2 u 1 + u 2 ⋅ 2 1 + u 2 d u = ∫ 1 u 2 + u + 1 d u = 2 3 a r c t a n 2 u + 1 3 + C = 2 3 a r c t a n 2 t a n x 2 + 1 3 + C ( 17 ) 设 u = t a n x 2 ,则 x = 2 a r c t a n u , d x = 2 1 + u 2 d u ,得 ∫ d x 1 + s i n x + c o s x = ∫ 1 1 + 2 u 1 + u 2 + 1 − u 2 1 + u 2 ⋅ 2 1 + u 2 d u = ∫ 1 1 + u d u = l n ∣ 1 + u ∣ + C = l n ∣ 1 + t a n x 2 ∣ + C ( 18 ) 设 u = t a n x 2 ,则 x = 2 a r c t a n u , d x = 2 1 + u 2 d u ,得 ∫ d x 2 s i n x − c o s x + 5 = ∫ 1 4 u 1 + u 2 − 1 − u 2 1 + u 2 + 5 ⋅ 2 1 + u 2 d u = 1 3 ∫ 1 ( u + 1 3 ) 2 + 5 9 d u = 1 5 a r c t a n 3 u + 1 5 + C = 1 5 a r c t a n 3 t a n x 2 + 1 5 + C ( 19 ) 设 u = x + 1 3 ,则 x = u 3 − 1 , d x = 3 u 2 d u ,得 ∫ d x 1 + x + 1 3 = 3 ∫ u 2 1 + u d u ,设 t = 1 + u ,则 u = t − 1 , d u = d t ,得 3 ∫ u 2 1 + u d u = 3 ∫ ( t − 2 + 1 t ) d t = 3 2 t 2 − 6 t + 3 l n ∣ t ∣ + C = 3 2 ( x + 1 ) 2 3 − 3 x + 1 3 + 3 l n ∣ 1 + x + 1 3 ∣ + C ( 20 ) 设 u = x ,则 x = u 2 , d x = 2 u d u ,得 ∫ ( x ) 3 − 1 x + 1 d x = 2 ∫ u 4 − u u + 1 d u ,设 t = u + 1 , u = t − 1 , d u = d t ,得 2 ∫ u 4 − u u + 1 d u = 2 ∫ ( t 3 − 4 t 2 + 6 t − 5 + 2 t ) d t = 1 2 t 4 − 8 3 t 3 + 6 t 2 − 10 t + 4 l n ∣ t ∣ + C = 1 2 x 2 − 2 3 x x − 4 x + x + 4 l n ( x + 1 ) + C ( 21 ) 设 u = x + 1 ,则 x = u 2 − 1 , d x = 2 u d u ,得 ∫ x + 1 − 1 x + 1 + 1 d x = 2 ∫ ( u − 2 + 2 u + 1 ) d u = u 2 − 4 u + 4 l n ∣ u + 1 ∣ + C = x − 4 x + 1 + 4 l n ( x + 1 + 1 ) + C ( 22 ) 设 u = x 4 ,则 x = u 4 , d x = 4 u 3 d u ,得 ∫ d x x + x 4 = 4 ∫ u 2 u + 1 d u = 4 ∫ ( u − 1 + 1 u + 1 ) d u = 2 u 2 − 4 u + 4 l n ∣ u + 1 ∣ + C = 2 x − 4 x 4 + 4 l n ( x 4 + 1 ) + C ( 23 ) 设 u = 1 − x 1 + x ,则 x = 1 − u 2 1 + u 2 , d x = − 4 u ( 1 + u 2 ) 2 d u ,得 ∫ 1 − x 1 + x d x x = ∫ − 4 u 2 ( 1 − u 2 ) ( 1 + u 2 ) d u = ∫ ( 2 1 + u 2 − 1 1 − u − 1 1 + u ) d u = 2 a r c t a n u + l n ∣ 1 − u ∣ − l n ∣ 1 + u ∣ + C = 2 a r c t a n 1 − x 1 + x + l n ∣ 1 + x − 1 − x 1 + x + 1 − x ∣ + C ( 24 ) ∫ d x ( x + 1 ) 2 ( x − 1 ) 4 3 = ∫ 1 x 2 − 1 x + 1 x − 1 3 d x ,设 u = x + 1 x − 1 3 ,则 x = u 3 + 1 u 3 − 1 , d x = − 6 u 2 ( u 3 − 1 ) 2 d u ,得 ∫ 1 x 2 − 1 x + 1 x − 1 3 d x = ∫ u ( u 3 + 1 u 3 − 1 ) 2 − 1 ⋅ − 6 u 2 ( u 3 − 1 ) 2 d u = − 3 2 ∫ d u = − 3 2 u + C = − 3 2 x + 1 x − 1 3 + C \begin{aligned} &\ \ (11)\ \int \frac{dx}{(x^2+1)(x^2+x+1)}=\int \left(\frac{-x}{x^2+1}+\frac{x+1}{x^2+x+1}\right)dx=\\\\ &\ \ \ \ \ \ \ \ \ -\frac{1}{2}ln(x^2+1)+\frac{1}{2}\int \frac{1}{x^2+x+1}d(x^2+x+1)+\frac{1}{2}\int \frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}dx=\\\\ &\ \ \ \ \ \ \ \ \ -\frac{1}{2}ln(x^2+1)+\frac{1}{2}ln(x^2+x+1)+\frac{1}{\sqrt{3}}arctan\ \frac{2x+1}{\sqrt{3}}+C\\\\ &\ \ (12)\ \int \frac{(x+1)^2}{(x^2+1)^2}dx=\int \left(\frac{1}{1+x^2}+\frac{2x}{(x^2+1)^2}\right)dx=\int \frac{1}{1+x^2}dx+2\int \frac{x}{(x^2+1)^2}dx=\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{1}{1+x^2}dx+\int \frac{1}{(x^2+1)^2}d(x^2+1)=arctan\ x-\frac{1}{x^2+1}+C\\\\ &\ \ (13)\ \int \frac{-x^2-2}{(x^2+x+1)^2}dx=\int \frac{-x^2-x-1+x-1}{(x^2+x+1)^2}dx=\\\\ &\ \ \ \ \ \ \ \ \ -\int \frac{1}{x^2+x+1}dx+\int \frac{2x+1}{(x^2+x+1)^2}dx-\int \frac{x+2}{(x^2+x+1)^2}dx=\\\\ &\ \ \ \ \ \ \ \ \ -\int \frac{1}{x^2+x+1}dx+\frac{1}{2}\int \frac{1}{(x^2+x+1)^2}d(x^2+x+1)-\frac{3}{2}\int \frac{1}{(x^2+x+1)^2}dx,\\\\ &\ \ \ \ \ \ \ \ \ 设u=x+\frac{1}{2},a=\frac{\sqrt{3}}{2},得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{1}{(x^2+x+1)^2}dx=\int \frac{1}{(u^2+a^2)^2}dx=\frac{1}{2a^3}\left[arctan\ \frac{u}{a}+\frac{au}{a^2+u^2}\right]+C=\\\\ &\ \ \ \ \ \ \ \ \ \frac{2}{\sqrt{3}}arctan\ \frac{2x+1}{\sqrt{3}}+\frac{1}{2}\cdot \frac{2x+1}{x^2+x+1},代入原式,得\\\\ &\ \ \ \ \ \ \ \ \ -\frac{2}{\sqrt{3}}arctan\ \frac{2x+1}{\sqrt{3}}-\frac{1}{2}\cdot \frac{1}{x^2+x+1}-\frac{2}{\sqrt{3}}arctan\ \frac{2x+1}{\sqrt{3}}-\frac{1}{2}\cdot \frac{2x+1}{x^2+x+1}+C=\\\\ &\ \ \ \ \ \ \ \ \ -\frac{4}{\sqrt{3}}arctan\ \frac{2x+1}{\sqrt{3}}-\frac{x+1}{x^2+x+1}+C\\\\ &\ \ (14)\ \int \frac{dx}{3+sin^2\ x}=-\int \frac{csc^2\ x}{3csc^2\ x+1}dx=-\frac{1}{3cot^2\ x+4}d(cot\ x),令u=cot\ x,得\\\\ &\ \ \ \ \ \ \ \ \ -\int \frac{1}{3u^2+4}du=-\frac{1}{2\sqrt{3}}arctan\ \frac{\sqrt{3}u}{2}+C=-\frac{1}{2\sqrt{3}}arctan\ \frac{\sqrt{3}cot\ x}{2}+C\\\\ &\ \ (15)\ 设u=tan\ \frac{x}{2},则x=2arctan\ u,dx=\frac{2}{1+u^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{3+cos\ x}=\int \frac{1}{3+\frac{1-u^2}{1+u^2}}\cdot \frac{2}{1+u^2}du=\int \frac{1}{2+u^2}du=\frac{1}{\sqrt{2}}arctan\ \frac{u}{\sqrt{2}}+C=\frac{1}{\sqrt{2}}arctan\ \frac{tan\ \frac{x}{2}}{\sqrt{2}}+C\\\\ &\ \ (16)\ 设u=tan\ \frac{x}{2},则x=2arctan\ u,dx=\frac{2}{1+u^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{2+sin\ x}=\int \frac{1}{2+\frac{2u}{1+u^2}}\cdot \frac{2}{1+u^2}du=\int \frac{1}{u^2+u+1}du=\frac{2}{\sqrt{3}}arctan\ \frac{2u+1}{\sqrt{3}}+C=\\\\ &\ \ \ \ \ \ \ \ \ \frac{2}{\sqrt{3}}arctan\ \frac{2tan\ \frac{x}{2}+1}{\sqrt{3}}+C\\\\ &\ \ (17)\ 设u=tan\ \frac{x}{2},则x=2arctan\ u,dx=\frac{2}{1+u^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{1+sin\ x+cos\ x}=\int \frac{1}{1+\frac{2u}{1+u^2}+\frac{1-u^2}{1+u^2}}\cdot \frac{2}{1+u^2}du=\int \frac{1}{1+u}du=ln\ |1+u|+C=ln\ |1+tan\ \frac{x}{2}|+C\\\\ &\ \ (18)\ 设u=tan\ \frac{x}{2},则x=2arctan\ u,dx=\frac{2}{1+u^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{2sin\ x-cos\ x+5}=\int \frac{1}{\frac{4u}{1+u^2}-\frac{1-u^2}{1+u^2}+5}\cdot \frac{2}{1+u^2}du=\frac{1}{3}\int \frac{1}{\left(u+\frac{1}{3}\right)^2+\frac{5}{9}}du=\frac{1}{\sqrt{5}}arctan\ \frac{3u+1}{\sqrt{5}}+C=\\\\ &\ \ \ \ \ \ \ \ \ \frac{1}{\sqrt{5}}arctan\ \frac{3tan\ \frac{x}{2}+1}{\sqrt{5}}+C\\\\ &\ \ (19)\ 设u=\sqrt[3]{x+1},则x=u^3-1,dx=3u^2du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{1+\sqrt[3]{x+1}}=3\int \frac{u^2}{1+u}du,设t=1+u,则u=t-1,du=dt,得\\\\ &\ \ \ \ \ \ \ \ \ 3\int \frac{u^2}{1+u}du=3\int (t-2+\frac{1}{t})dt=\frac{3}{2}t^2-6t+3ln\ |t|+C=\frac{3}{2}\sqrt[3]{(x+1)^2}-3\sqrt[3]{x+1}+3ln\ |1+\sqrt[3]{x+1}|+C\\\\ &\ \ (20)\ 设u=\sqrt{x},则x=u^2,dx=2udu,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{(\sqrt{x})^3-1}{\sqrt{x}+1}dx=2\int \frac{u^4-u}{u+1}du,设t=u+1,u=t-1,du=dt,得\\\\ &\ \ \ \ \ \ \ \ \ 2\int \frac{u^4-u}{u+1}du=2\int \left(t^3-4t^2+6t-5+\frac{2}{t}\right)dt=\frac{1}{2}t^4-\frac{8}{3}t^3+6t^2-10t+4ln\ |t|+C=\\\\ &\ \ \ \ \ \ \ \ \ \frac{1}{2}x^2-\frac{2}{3}x\sqrt{x}-4\sqrt{x}+x+4ln(\sqrt{x}+1)+C\\\\ &\ \ (21)\ 设u=\sqrt{x+1},则x=u^2-1,dx=2udu,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}dx=2\int \left(u-2+\frac{2}{u+1}\right)du=u^2-4u+4ln\ |u+1|+C=\\\\ &\ \ \ \ \ \ \ \ \ x-4\sqrt{x+1}+4ln(\sqrt{x+1}+1)+C\\\\ &\ \ (22)\ 设u=\sqrt[4]{x},则x=u^4,dx=4u^3du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{\sqrt{x}+\sqrt[4]{x}}=4\int \frac{u^2}{u+1}du=4\int \left(u-1+\frac{1}{u+1}\right)du=2u^2-4u+4ln\ |u+1|+C=\\\\ &\ \ \ \ \ \ \ \ \ 2\sqrt{x}-4\sqrt[4]{x}+4ln(\sqrt[4]{x}+1)+C\\\\ &\ \ (23)\ 设u=\sqrt{\frac{1-x}{1+x}},则x=\frac{1-u^2}{1+u^2},dx=-\frac{4u}{(1+u^2)^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \sqrt{\frac{1-x}{1+x}}\frac{dx}{x}=\int \frac{-4u^2}{(1-u^2)(1+u^2)}du=\int \left(\frac{2}{1+u^2}-\frac{1}{1-u}-\frac{1}{1+u}\right)du=\\\\ &\ \ \ \ \ \ \ \ \ 2arctan\ u+ln\ |1-u|-ln\ |1+u|+C=2arctan\sqrt{\frac{1-x}{1+x}}+ln\ \left|\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right|+C\\\\ &\ \ (24)\ \int \frac{dx}{\sqrt[3]{(x+1)^2(x-1)^4}}=\int \frac{1}{x^2-1}\sqrt[3]{\frac{x+1}{x-1}}dx,设u=\sqrt[3]{\frac{x+1}{x-1}},则x=\frac{u^3+1}{u^3-1},dx=\frac{-6u^2}{(u^3-1)^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{1}{x^2-1}\sqrt[3]{\frac{x+1}{x-1}}dx=\int \frac{u}{\left(\frac{u^3+1}{u^3-1}\right)^2-1}\cdot \frac{-6u^2}{(u^3-1)^2}du=-\frac{3}{2}\int du=-\frac{3}{2}u+C=-\frac{3}{2}\sqrt[3]{\frac{x+1}{x-1}}+C & \end{aligned} (11) ∫(x2+1)(x2+x+1)dx=∫(x2+1−x+x2+x+1x+1)dx= −21ln(x2+1)+21∫x2+x+11d(x2+x+1)+21∫(x+21)2+431dx= −21ln(x2+1)+21ln(x2+x+1)+31arctan 32x+1+C (12) ∫(x2+1)2(x+1)2dx=∫(1+x21+(x2+1)22x)dx=∫1+x21dx+2∫(x2+1)2xdx= ∫1+x21dx+∫(x2+1)21d(x2+1)=arctan x−x2+11+C (13) ∫(x2+x+1)2−x2−2dx=∫(x2+x+1)2−x2−x−1+x−1dx= −∫x2+x+11dx+∫(x2+x+1)22x+1dx−∫(x2+x+1)2x+2dx= −∫x2+x+11dx+21∫(x2+x+1)21d(x2+x+1)−23∫(x2+x+1)21dx, 设u=x+21,a=23,得 ∫(x2+x+1)21dx=∫(u2+a2)21dx=2a31[arctan au+a2+u2au]+C= 32arctan 32x+1+21⋅x2+x+12x+1,代入原式,得 −32arctan 32x+1−21⋅x2+x+11−32arctan 32x+1−21⋅x2+x+12x+1+C= −34arctan 32x+1−x2+x+1x+1+C (14) ∫3+sin2 xdx=−∫3csc2 x+1csc2 xdx=−3cot2 x+41d(cot x),令u=cot x,得 −∫3u2+41du=−231arctan 23u+C=−231arctan 23cot x+C (15) 设u=tan 2x,则x=2arctan u,dx=1+u22du,得 ∫3+cos xdx=∫3+1+u21−u21⋅1+u22du=∫2+u21du=21arctan 2u+C=21arctan 2tan 2x+C (16) 设u=tan 2x,则x=2arctan u,dx=1+u22du,得 ∫2+sin xdx=∫2+1+u22u1⋅1+u22du=∫u2+u+11du=32arctan 32u+1+C= 32arctan 32tan 2x+1+C (17) 设u=tan 2x,则x=2arctan u,dx=1+u22du,得 ∫1+sin x+cos xdx=∫1+1+u22u+1+u21−u21⋅1+u22du=∫1+u1du=ln ∣1+u∣+C=ln ∣1+tan 2x∣+C (18) 设u=tan 2x,则x=2arctan u,dx=1+u22du,得 ∫2sin x−cos x+5dx=∫1+u24u−1+u21−u2+51⋅1+u22du=31∫(u+31)2+951du=51arctan 53u+1+C= 51arctan 53tan 2x+1+C (19) 设u=3x+1,则x=u3−1,dx=3u2du,得 ∫1+3x+1dx=3∫1+uu2du,设t=1+u,则u=t−1,du=dt,得 3∫1+uu2du=3∫(t−2+t1)dt=23t2−6t+3ln ∣t∣+C=233(x+1)2−33x+1+3ln ∣1+3x+1∣+C (20) 设u=x,则x=u2,dx=2udu,得 ∫x+1(x)3−1dx=2∫u+1u4−udu,设t=u+1,u=t−1,du=dt,得 2∫u+1u4−udu=2∫(t3−4t2+6t−5+t2)dt=21t4−38t3+6t2−10t+4ln ∣t∣+C= 21x2−32xx−4x+x+4ln(x+1)+C (21) 设u=x+1,则x=u2−1,dx=2udu,得 ∫x+1+1x+1−1dx=2∫(u−2+u+12)du=u2−4u+4ln ∣u+1∣+C= x−4x+1+4ln(x+1+1)+C (22) 设u=4x,则x=u4,dx=4u3du,得 ∫x+4xdx=4∫u+1u2du=4∫(u−1+u+11)du=2u2−4u+4ln ∣u+1∣+C= 2x−44x+4ln(4x+1)+C (23) 设u=1+x1−x,则x=1+u21−u2,dx=−(1+u2)24udu,得 ∫1+x1−xxdx=∫(1−u2)(1+u2)−4u2du=∫(1+u22−1−u1−1+u1)du= 2arctan u+ln ∣1−u∣−ln ∣1+u∣+C=2arctan1+x1−x+ln ∣ ∣1+x+1−x1+x−1−x∣ ∣+C (24) ∫3(x+1)2(x−1)4dx=∫x2−113x−1x+1dx,设u=3x−1x+1,则x=u3−1u3+1,dx=(u3−1)2−6u2du,得 ∫x2−113x−1x+1dx=∫(u3−1u3+1)2−1u⋅(u3−1)2−6u2du=−23∫du=−23u+C=−233x−1x+1+C