高等数学(第七版)同济大学 习题4-4(后14题) 个人解答

高等数学(第七版)同济大学 习题4-4(后14题)

 

解:

   ( 11 )   ∫ d x ( x 2 + 1 ) ( x 2 + x + 1 ) = ∫ ( − x x 2 + 1 + x + 1 x 2 + x + 1 ) d x =           − 1 2 l n ( x 2 + 1 ) + 1 2 ∫ 1 x 2 + x + 1 d ( x 2 + x + 1 ) + 1 2 ∫ 1 ( x + 1 2 ) 2 + 3 4 d x =           − 1 2 l n ( x 2 + 1 ) + 1 2 l n ( x 2 + x + 1 ) + 1 3 a r c t a n   2 x + 1 3 + C    ( 12 )   ∫ ( x + 1 ) 2 ( x 2 + 1 ) 2 d x = ∫ ( 1 1 + x 2 + 2 x ( x 2 + 1 ) 2 ) d x = ∫ 1 1 + x 2 d x + 2 ∫ x ( x 2 + 1 ) 2 d x =           ∫ 1 1 + x 2 d x + ∫ 1 ( x 2 + 1 ) 2 d ( x 2 + 1 ) = a r c t a n   x − 1 x 2 + 1 + C    ( 13 )   ∫ − x 2 − 2 ( x 2 + x + 1 ) 2 d x = ∫ − x 2 − x − 1 + x − 1 ( x 2 + x + 1 ) 2 d x =           − ∫ 1 x 2 + x + 1 d x + ∫ 2 x + 1 ( x 2 + x + 1 ) 2 d x − ∫ x + 2 ( x 2 + x + 1 ) 2 d x =           − ∫ 1 x 2 + x + 1 d x + 1 2 ∫ 1 ( x 2 + x + 1 ) 2 d ( x 2 + x + 1 ) − 3 2 ∫ 1 ( x 2 + x + 1 ) 2 d x ,          设 u = x + 1 2 , a = 3 2 ,得           ∫ 1 ( x 2 + x + 1 ) 2 d x = ∫ 1 ( u 2 + a 2 ) 2 d x = 1 2 a 3 [ a r c t a n   u a + a u a 2 + u 2 ] + C =           2 3 a r c t a n   2 x + 1 3 + 1 2 ⋅ 2 x + 1 x 2 + x + 1 ,代入原式,得           − 2 3 a r c t a n   2 x + 1 3 − 1 2 ⋅ 1 x 2 + x + 1 − 2 3 a r c t a n   2 x + 1 3 − 1 2 ⋅ 2 x + 1 x 2 + x + 1 + C =           − 4 3 a r c t a n   2 x + 1 3 − x + 1 x 2 + x + 1 + C    ( 14 )   ∫ d x 3 + s i n 2   x = − ∫ c s c 2   x 3 c s c 2   x + 1 d x = − 1 3 c o t 2   x + 4 d ( c o t   x ) ,令 u = c o t   x ,得           − ∫ 1 3 u 2 + 4 d u = − 1 2 3 a r c t a n   3 u 2 + C = − 1 2 3 a r c t a n   3 c o t   x 2 + C    ( 15 )  设 u = t a n   x 2 ,则 x = 2 a r c t a n   u , d x = 2 1 + u 2 d u ,得           ∫ d x 3 + c o s   x = ∫ 1 3 + 1 − u 2 1 + u 2 ⋅ 2 1 + u 2 d u = ∫ 1 2 + u 2 d u = 1 2 a r c t a n   u 2 + C = 1 2 a r c t a n   t a n   x 2 2 + C    ( 16 )  设 u = t a n   x 2 ,则 x = 2 a r c t a n   u , d x = 2 1 + u 2 d u ,得           ∫ d x 2 + s i n   x = ∫ 1 2 + 2 u 1 + u 2 ⋅ 2 1 + u 2 d u = ∫ 1 u 2 + u + 1 d u = 2 3 a r c t a n   2 u + 1 3 + C =           2 3 a r c t a n   2 t a n   x 2 + 1 3 + C    ( 17 )  设 u = t a n   x 2 ,则 x = 2 a r c t a n   u , d x = 2 1 + u 2 d u ,得           ∫ d x 1 + s i n   x + c o s   x = ∫ 1 1 + 2 u 1 + u 2 + 1 − u 2 1 + u 2 ⋅ 2 1 + u 2 d u = ∫ 1 1 + u d u = l n   ∣ 1 + u ∣ + C = l n   ∣ 1 + t a n   x 2 ∣ + C    ( 18 )  设 u = t a n   x 2 ,则 x = 2 a r c t a n   u , d x = 2 1 + u 2 d u ,得           ∫ d x 2 s i n   x − c o s   x + 5 = ∫ 1 4 u 1 + u 2 − 1 − u 2 1 + u 2 + 5 ⋅ 2 1 + u 2 d u = 1 3 ∫ 1 ( u + 1 3 ) 2 + 5 9 d u = 1 5 a r c t a n   3 u + 1 5 + C =           1 5 a r c t a n   3 t a n   x 2 + 1 5 + C    ( 19 )  设 u = x + 1 3 ,则 x = u 3 − 1 , d x = 3 u 2 d u ,得           ∫ d x 1 + x + 1 3 = 3 ∫ u 2 1 + u d u ,设 t = 1 + u ,则 u = t − 1 , d u = d t ,得           3 ∫ u 2 1 + u d u = 3 ∫ ( t − 2 + 1 t ) d t = 3 2 t 2 − 6 t + 3 l n   ∣ t ∣ + C = 3 2 ( x + 1 ) 2 3 − 3 x + 1 3 + 3 l n   ∣ 1 + x + 1 3 ∣ + C    ( 20 )  设 u = x ,则 x = u 2 , d x = 2 u d u ,得           ∫ ( x ) 3 − 1 x + 1 d x = 2 ∫ u 4 − u u + 1 d u ,设 t = u + 1 , u = t − 1 , d u = d t ,得           2 ∫ u 4 − u u + 1 d u = 2 ∫ ( t 3 − 4 t 2 + 6 t − 5 + 2 t ) d t = 1 2 t 4 − 8 3 t 3 + 6 t 2 − 10 t + 4 l n   ∣ t ∣ + C =           1 2 x 2 − 2 3 x x − 4 x + x + 4 l n ( x + 1 ) + C    ( 21 )  设 u = x + 1 ,则 x = u 2 − 1 , d x = 2 u d u ,得           ∫ x + 1 − 1 x + 1 + 1 d x = 2 ∫ ( u − 2 + 2 u + 1 ) d u = u 2 − 4 u + 4 l n   ∣ u + 1 ∣ + C =           x − 4 x + 1 + 4 l n ( x + 1 + 1 ) + C    ( 22 )  设 u = x 4 ,则 x = u 4 , d x = 4 u 3 d u ,得           ∫ d x x + x 4 = 4 ∫ u 2 u + 1 d u = 4 ∫ ( u − 1 + 1 u + 1 ) d u = 2 u 2 − 4 u + 4 l n   ∣ u + 1 ∣ + C =           2 x − 4 x 4 + 4 l n ( x 4 + 1 ) + C    ( 23 )  设 u = 1 − x 1 + x ,则 x = 1 − u 2 1 + u 2 , d x = − 4 u ( 1 + u 2 ) 2 d u ,得           ∫ 1 − x 1 + x d x x = ∫ − 4 u 2 ( 1 − u 2 ) ( 1 + u 2 ) d u = ∫ ( 2 1 + u 2 − 1 1 − u − 1 1 + u ) d u =           2 a r c t a n   u + l n   ∣ 1 − u ∣ − l n   ∣ 1 + u ∣ + C = 2 a r c t a n 1 − x 1 + x + l n   ∣ 1 + x − 1 − x 1 + x + 1 − x ∣ + C    ( 24 )   ∫ d x ( x + 1 ) 2 ( x − 1 ) 4 3 = ∫ 1 x 2 − 1 x + 1 x − 1 3 d x ,设 u = x + 1 x − 1 3 ,则 x = u 3 + 1 u 3 − 1 , d x = − 6 u 2 ( u 3 − 1 ) 2 d u ,得           ∫ 1 x 2 − 1 x + 1 x − 1 3 d x = ∫ u ( u 3 + 1 u 3 − 1 ) 2 − 1 ⋅ − 6 u 2 ( u 3 − 1 ) 2 d u = − 3 2 ∫ d u = − 3 2 u + C = − 3 2 x + 1 x − 1 3 + C \begin{aligned} &\ \ (11)\ \int \frac{dx}{(x^2+1)(x^2+x+1)}=\int \left(\frac{-x}{x^2+1}+\frac{x+1}{x^2+x+1}\right)dx=\\\\ &\ \ \ \ \ \ \ \ \ -\frac{1}{2}ln(x^2+1)+\frac{1}{2}\int \frac{1}{x^2+x+1}d(x^2+x+1)+\frac{1}{2}\int \frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}dx=\\\\ &\ \ \ \ \ \ \ \ \ -\frac{1}{2}ln(x^2+1)+\frac{1}{2}ln(x^2+x+1)+\frac{1}{\sqrt{3}}arctan\ \frac{2x+1}{\sqrt{3}}+C\\\\ &\ \ (12)\ \int \frac{(x+1)^2}{(x^2+1)^2}dx=\int \left(\frac{1}{1+x^2}+\frac{2x}{(x^2+1)^2}\right)dx=\int \frac{1}{1+x^2}dx+2\int \frac{x}{(x^2+1)^2}dx=\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{1}{1+x^2}dx+\int \frac{1}{(x^2+1)^2}d(x^2+1)=arctan\ x-\frac{1}{x^2+1}+C\\\\ &\ \ (13)\ \int \frac{-x^2-2}{(x^2+x+1)^2}dx=\int \frac{-x^2-x-1+x-1}{(x^2+x+1)^2}dx=\\\\ &\ \ \ \ \ \ \ \ \ -\int \frac{1}{x^2+x+1}dx+\int \frac{2x+1}{(x^2+x+1)^2}dx-\int \frac{x+2}{(x^2+x+1)^2}dx=\\\\ &\ \ \ \ \ \ \ \ \ -\int \frac{1}{x^2+x+1}dx+\frac{1}{2}\int \frac{1}{(x^2+x+1)^2}d(x^2+x+1)-\frac{3}{2}\int \frac{1}{(x^2+x+1)^2}dx,\\\\ &\ \ \ \ \ \ \ \ \ 设u=x+\frac{1}{2},a=\frac{\sqrt{3}}{2},得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{1}{(x^2+x+1)^2}dx=\int \frac{1}{(u^2+a^2)^2}dx=\frac{1}{2a^3}\left[arctan\ \frac{u}{a}+\frac{au}{a^2+u^2}\right]+C=\\\\ &\ \ \ \ \ \ \ \ \ \frac{2}{\sqrt{3}}arctan\ \frac{2x+1}{\sqrt{3}}+\frac{1}{2}\cdot \frac{2x+1}{x^2+x+1},代入原式,得\\\\ &\ \ \ \ \ \ \ \ \ -\frac{2}{\sqrt{3}}arctan\ \frac{2x+1}{\sqrt{3}}-\frac{1}{2}\cdot \frac{1}{x^2+x+1}-\frac{2}{\sqrt{3}}arctan\ \frac{2x+1}{\sqrt{3}}-\frac{1}{2}\cdot \frac{2x+1}{x^2+x+1}+C=\\\\ &\ \ \ \ \ \ \ \ \ -\frac{4}{\sqrt{3}}arctan\ \frac{2x+1}{\sqrt{3}}-\frac{x+1}{x^2+x+1}+C\\\\ &\ \ (14)\ \int \frac{dx}{3+sin^2\ x}=-\int \frac{csc^2\ x}{3csc^2\ x+1}dx=-\frac{1}{3cot^2\ x+4}d(cot\ x),令u=cot\ x,得\\\\ &\ \ \ \ \ \ \ \ \ -\int \frac{1}{3u^2+4}du=-\frac{1}{2\sqrt{3}}arctan\ \frac{\sqrt{3}u}{2}+C=-\frac{1}{2\sqrt{3}}arctan\ \frac{\sqrt{3}cot\ x}{2}+C\\\\ &\ \ (15)\ 设u=tan\ \frac{x}{2},则x=2arctan\ u,dx=\frac{2}{1+u^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{3+cos\ x}=\int \frac{1}{3+\frac{1-u^2}{1+u^2}}\cdot \frac{2}{1+u^2}du=\int \frac{1}{2+u^2}du=\frac{1}{\sqrt{2}}arctan\ \frac{u}{\sqrt{2}}+C=\frac{1}{\sqrt{2}}arctan\ \frac{tan\ \frac{x}{2}}{\sqrt{2}}+C\\\\ &\ \ (16)\ 设u=tan\ \frac{x}{2},则x=2arctan\ u,dx=\frac{2}{1+u^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{2+sin\ x}=\int \frac{1}{2+\frac{2u}{1+u^2}}\cdot \frac{2}{1+u^2}du=\int \frac{1}{u^2+u+1}du=\frac{2}{\sqrt{3}}arctan\ \frac{2u+1}{\sqrt{3}}+C=\\\\ &\ \ \ \ \ \ \ \ \ \frac{2}{\sqrt{3}}arctan\ \frac{2tan\ \frac{x}{2}+1}{\sqrt{3}}+C\\\\ &\ \ (17)\ 设u=tan\ \frac{x}{2},则x=2arctan\ u,dx=\frac{2}{1+u^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{1+sin\ x+cos\ x}=\int \frac{1}{1+\frac{2u}{1+u^2}+\frac{1-u^2}{1+u^2}}\cdot \frac{2}{1+u^2}du=\int \frac{1}{1+u}du=ln\ |1+u|+C=ln\ |1+tan\ \frac{x}{2}|+C\\\\ &\ \ (18)\ 设u=tan\ \frac{x}{2},则x=2arctan\ u,dx=\frac{2}{1+u^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{2sin\ x-cos\ x+5}=\int \frac{1}{\frac{4u}{1+u^2}-\frac{1-u^2}{1+u^2}+5}\cdot \frac{2}{1+u^2}du=\frac{1}{3}\int \frac{1}{\left(u+\frac{1}{3}\right)^2+\frac{5}{9}}du=\frac{1}{\sqrt{5}}arctan\ \frac{3u+1}{\sqrt{5}}+C=\\\\ &\ \ \ \ \ \ \ \ \ \frac{1}{\sqrt{5}}arctan\ \frac{3tan\ \frac{x}{2}+1}{\sqrt{5}}+C\\\\ &\ \ (19)\ 设u=\sqrt[3]{x+1},则x=u^3-1,dx=3u^2du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{1+\sqrt[3]{x+1}}=3\int \frac{u^2}{1+u}du,设t=1+u,则u=t-1,du=dt,得\\\\ &\ \ \ \ \ \ \ \ \ 3\int \frac{u^2}{1+u}du=3\int (t-2+\frac{1}{t})dt=\frac{3}{2}t^2-6t+3ln\ |t|+C=\frac{3}{2}\sqrt[3]{(x+1)^2}-3\sqrt[3]{x+1}+3ln\ |1+\sqrt[3]{x+1}|+C\\\\ &\ \ (20)\ 设u=\sqrt{x},则x=u^2,dx=2udu,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{(\sqrt{x})^3-1}{\sqrt{x}+1}dx=2\int \frac{u^4-u}{u+1}du,设t=u+1,u=t-1,du=dt,得\\\\ &\ \ \ \ \ \ \ \ \ 2\int \frac{u^4-u}{u+1}du=2\int \left(t^3-4t^2+6t-5+\frac{2}{t}\right)dt=\frac{1}{2}t^4-\frac{8}{3}t^3+6t^2-10t+4ln\ |t|+C=\\\\ &\ \ \ \ \ \ \ \ \ \frac{1}{2}x^2-\frac{2}{3}x\sqrt{x}-4\sqrt{x}+x+4ln(\sqrt{x}+1)+C\\\\ &\ \ (21)\ 设u=\sqrt{x+1},则x=u^2-1,dx=2udu,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}dx=2\int \left(u-2+\frac{2}{u+1}\right)du=u^2-4u+4ln\ |u+1|+C=\\\\ &\ \ \ \ \ \ \ \ \ x-4\sqrt{x+1}+4ln(\sqrt{x+1}+1)+C\\\\ &\ \ (22)\ 设u=\sqrt[4]{x},则x=u^4,dx=4u^3du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{dx}{\sqrt{x}+\sqrt[4]{x}}=4\int \frac{u^2}{u+1}du=4\int \left(u-1+\frac{1}{u+1}\right)du=2u^2-4u+4ln\ |u+1|+C=\\\\ &\ \ \ \ \ \ \ \ \ 2\sqrt{x}-4\sqrt[4]{x}+4ln(\sqrt[4]{x}+1)+C\\\\ &\ \ (23)\ 设u=\sqrt{\frac{1-x}{1+x}},则x=\frac{1-u^2}{1+u^2},dx=-\frac{4u}{(1+u^2)^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \sqrt{\frac{1-x}{1+x}}\frac{dx}{x}=\int \frac{-4u^2}{(1-u^2)(1+u^2)}du=\int \left(\frac{2}{1+u^2}-\frac{1}{1-u}-\frac{1}{1+u}\right)du=\\\\ &\ \ \ \ \ \ \ \ \ 2arctan\ u+ln\ |1-u|-ln\ |1+u|+C=2arctan\sqrt{\frac{1-x}{1+x}}+ln\ \left|\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right|+C\\\\ &\ \ (24)\ \int \frac{dx}{\sqrt[3]{(x+1)^2(x-1)^4}}=\int \frac{1}{x^2-1}\sqrt[3]{\frac{x+1}{x-1}}dx,设u=\sqrt[3]{\frac{x+1}{x-1}},则x=\frac{u^3+1}{u^3-1},dx=\frac{-6u^2}{(u^3-1)^2}du,得\\\\ &\ \ \ \ \ \ \ \ \ \int \frac{1}{x^2-1}\sqrt[3]{\frac{x+1}{x-1}}dx=\int \frac{u}{\left(\frac{u^3+1}{u^3-1}\right)^2-1}\cdot \frac{-6u^2}{(u^3-1)^2}du=-\frac{3}{2}\int du=-\frac{3}{2}u+C=-\frac{3}{2}\sqrt[3]{\frac{x+1}{x-1}}+C & \end{aligned}   (11) (x2+1)(x2+x+1)dx=(x2+1x+x2+x+1x+1)dx=         21ln(x2+1)+21x2+x+11d(x2+x+1)+21(x+21)2+431dx=         21ln(x2+1)+21ln(x2+x+1)+3 1arctan 3 2x+1+C  (12) (x2+1)2(x+1)2dx=(1+x21+(x2+1)22x)dx=1+x21dx+2(x2+1)2xdx=         1+x21dx+(x2+1)21d(x2+1)=arctan xx2+11+C  (13) (x2+x+1)2x22dx=(x2+x+1)2x2x1+x1dx=         x2+x+11dx+(x2+x+1)22x+1dx(x2+x+1)2x+2dx=         x2+x+11dx+21(x2+x+1)21d(x2+x+1)23(x2+x+1)21dx         u=x+21a=23 ,得         (x2+x+1)21dx=(u2+a2)21dx=2a31[arctan au+a2+u2au]+C=         3 2arctan 3 2x+1+21x2+x+12x+1,代入原式,得         3 2arctan 3 2x+121x2+x+113 2arctan 3 2x+121x2+x+12x+1+C=         3 4arctan 3 2x+1x2+x+1x+1+C  (14) 3+sin2 xdx=3csc2 x+1csc2 xdx=3cot2 x+41d(cot x),令u=cot x,得         3u2+41du=23 1arctan 23 u+C=23 1arctan 23 cot x+C  (15) u=tan 2x,则x=2arctan udx=1+u22du,得         3+cos xdx=3+1+u21u211+u22du=2+u21du=2 1arctan 2 u+C=2 1arctan 2 tan 2x+C  (16) u=tan 2x,则x=2arctan udx=1+u22du,得         2+sin xdx=2+1+u22u11+u22du=u2+u+11du=3 2arctan 3 2u+1+C=         3 2arctan 3 2tan 2x+1+C  (17) u=tan 2x,则x=2arctan udx=1+u22du,得         1+sin x+cos xdx=1+1+u22u+1+u21u211+u22du=1+u1du=ln ∣1+u+C=ln ∣1+tan 2x+C  (18) u=tan 2x,则x=2arctan udx=1+u22du,得         2sin xcos x+5dx=1+u24u1+u21u2+511+u22du=31(u+31)2+951du=5 1arctan 5 3u+1+C=         5 1arctan 5 3tan 2x+1+C  (19) u=3x+1 ,则x=u31dx=3u2du,得         1+3x+1 dx=31+uu2du,设t=1+u,则u=t1du=dt,得         31+uu2du=3(t2+t1)dt=23t26t+3ln t+C=233(x+1)2 33x+1 +3ln ∣1+3x+1 +C  (20) u=x ,则x=u2dx=2udu,得         x +1(x )31dx=2u+1u4udu,设t=u+1u=t1du=dt,得         2u+1u4udu=2(t34t2+6t5+t2)dt=21t438t3+6t210t+4ln t+C=         21x232xx 4x +x+4ln(x +1)+C  (21) u=x+1 ,则x=u21dx=2udu,得         x+1 +1x+1 1dx=2(u2+u+12)du=u24u+4ln u+1∣+C=         x4x+1 +4ln(x+1 +1)+C  (22) u=4x ,则x=u4dx=4u3du,得         x +4x dx=4u+1u2du=4(u1+u+11)du=2u24u+4ln u+1∣+C=         2x 44x +4ln(4x +1)+C  (23) u=1+x1x ,则x=1+u21u2dx=(1+u2)24udu,得         1+x1x xdx=(1u2)(1+u2)4u2du=(1+u221u11+u1)du=         2arctan u+ln ∣1uln ∣1+u+C=2arctan1+x1x +ln  1+x +1x 1+x 1x +C  (24) 3(x+1)2(x1)4 dx=x2113x1x+1 dx,设u=3x1x+1 ,则x=u31u3+1dx=(u31)26u2du,得         x2113x1x+1 dx=(u31u3+1)21u(u31)26u2du=23du=23u+C=233x1x+1 +C

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值