高等数学(第七版)同济大学 习题9-2
1. 求下列函数的偏导数: \begin{aligned}&1. \ 求下列函数的偏导数:&\end{aligned} 1. 求下列函数的偏导数:
( 1 ) z = x 3 y − y 3 x ; ( 2 ) s = u 2 + v 2 u v ; ( 3 ) z = l n ( x y ) ; ( 4 ) z = s i n ( x y ) + c o s 2 ( x y ) ; ( 5 ) z = l n t a n x y ; ( 6 ) z = ( 1 + x y ) y ; ( 7 ) u = x y z ; ( 8 ) u = a r c t a n ( x − y ) z . \begin{aligned} &\ \ (1)\ \ z=x^3y-y^3x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ s=\frac{u^2+v^2}{uv};\\\\ &\ \ (3)\ \ z=\sqrt{ln(xy)};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ z=sin(xy)+cos^2(xy);\\\\ &\ \ (5)\ \ z=ln\ tan\ \frac{x}{y};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ z=(1+xy)^y;\\\\ &\ \ (7)\ \ u=x^{\frac{y}{z}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ u=arctan(x-y)^z. & \end{aligned} (1) z=x3y−y3x; (2) s=uvu2+v2; (3) z=ln(xy); (4) z=sin(xy)+cos2(xy); (5) z=ln tan yx; (6) z=(1+xy)y; (7) u=xzy; (8) u=arctan(x−y)z.
解:
( 1 ) ∂ z ∂ x = 3 y x 2 − y 3 , ∂ z ∂ y = x 3 − 3 x y 2 . ( 2 ) ∂ s ∂ u = 1 v − v u 2 , ∂ z ∂ v = − u v 2 + 1 u ,因为 u 和 v 分别看作常数,可以直接约掉。 ( 3 ) ∂ z ∂ x = 1 2 l n ( x y ) ⋅ 1 x y ⋅ y = 1 2 x l n ( x y ) , ∂ z ∂ y = 1 2 l n ( x y ) ⋅ 1 x y ⋅ x = 1 2 y l n ( x y ) ( 4 ) ∂ z ∂ x = y c o s ( x y ) + 2 c o s ( x y ) ⋅ [ − s i n ( x y ) ] ⋅ y = y c o s ( x y ) − y s i n ( 2 x y ) , ∂ z ∂ y = x c o s ( x y ) + 2 c o s ( x y ) ⋅ [ − s i n ( x y ) ] ⋅ x = x c o s ( x y ) − x s i n ( 2 x y ) . ( 5 ) ∂ z ∂ x = 1 t a n x y ⋅ s e c 2 x y ⋅ 1 y = 2 y s i n 2 x y , ∂ z ∂ y = 1 t a n x y ⋅ s e c 2 x y ⋅ ( − x y 2 ) = − 2 x y 2 s i n 2 x y . ( 6 ) ∂ z ∂ x = y ( 1 + x y ) y − 1 ⋅ y = y 2 ( 1 + x y ) y − 1 , ∂ z ∂ y = ( 1 + x y ) y [ l n ( 1 + x y ) + x y 1 + x y ] . ( 7 ) ∂ u ∂ x = y z x y z − 1 , ∂ u ∂ y = 1 z x y z l n x , ∂ u ∂ z = − y z 2 x y z l n x . ( 8 ) ∂ u ∂ x = z ( x − y ) z − 1 1 + ( x − y ) 2 z , ∂ u ∂ y = − z ( x − y ) z − 1 1 + ( x − y ) 2 z , ∂ u ∂ z = ( x − y ) z l n ( x − y ) 1 + ( x − y ) 2 z . \begin{aligned} &\ \ (1)\ \frac{\partial z}{\partial x}=3yx^2-y3,\frac{\partial z}{\partial y}=x^3-3xy^2.\\\\ &\ \ (2)\ \frac{\partial s}{\partial u}=\frac{1}{v}-\frac{v}{u^2},\frac{\partial z}{\partial v}=-\frac{u}{v^2}+\frac{1}{u},因为u和v分别看作常数,可以直接约掉。\\\\ &\ \ (3)\ \frac{\partial z}{\partial x}=\frac{1}{2\sqrt{ln(xy)}}\cdot \frac{1}{xy}\cdot y=\frac{1}{2x\sqrt{ln(xy)}},\frac{\partial z}{\partial y}=\frac{1}{2\sqrt{ln(xy)}}\cdot \frac{1}{xy}\cdot x=\frac{1}{2y\sqrt{ln(xy)}}\\\\ &\ \ (4)\ \frac{\partial z}{\partial x}=ycos(xy)+2cos(xy)\cdot [-sin(xy)]\cdot y=ycos(xy)-ysin(2xy),\\\\ &\ \ \ \ \ \ \ \ \frac{\partial z}{\partial y}=xcos(xy)+2cos(xy)\cdot [-sin(xy)]\cdot x=xcos(xy)-xsin(2xy).\\\\ &\ \ (5)\ \frac{\partial z}{\partial x}=\frac{1}{tan\ \frac{x}{y}}\cdot sec^2\ \frac{x}{y}\cdot \frac{1}{y}=\frac{2}{ysin\ \frac{2x}{y}},\frac{\partial z}{\partial y}=\frac{1}{tan\ \frac{x}{y}}\cdot sec^2\ \frac{x}{y}\cdot \left(-\frac{x}{y^2}\right)=-\frac{2x}{y^2sin\ \frac{2x}{y}}.\\\\ &\ \ (6)\ \frac{\partial z}{\partial x}=y(1+xy)^{y-1}\cdot y=y^2(1+xy)^{y-1},\frac{\partial z}{\partial y}=(1+xy)^y\left[ln(1+xy)+\frac{xy}{1+xy}\right].\\\\ &\ \ (7)\ \frac{\partial u}{\partial x}=\frac{y}{z}x^{\frac{y}{z}-1},\frac{\partial u}{\partial y}=\frac{1}{z}x^{\frac{y}{z}}ln\ x,\frac{\partial u}{\partial z}=-\frac{y}{z^2}x^{\frac{y}{z}}ln\ x.\\\\ &\ \ (8)\ \frac{\partial u}{\partial x}=\frac{z(x-y)^{z-1}}{1+(x-y)^{2z}},\frac{\partial u}{\partial y}=-\frac{z(x-y)^{z-1}}{1+(x-y)^{2z}},\frac{\partial u}{\partial z}=\frac{(x-y)^zln(x-y)}{1+(x-y)^{2z}}. & \end{aligned} (1) ∂x∂z=3yx2−y3,∂y∂z=x3−3xy2. (2) ∂u∂s=v1−u2v,∂v∂z=−v2u+u1,因为u和v分别看作常数,可以直接约掉。 (3) ∂x∂z=2ln(xy)1⋅xy1⋅y=2xln(xy)1,∂y∂z=2ln(xy)1⋅xy1⋅x=2yln(xy)1 (4) ∂x∂z=ycos(xy)+2cos(xy)⋅[−sin(xy)]⋅y=ycos(xy)−ysin(2xy), ∂y∂z=xcos(xy)+2cos(xy)⋅[−sin(xy)]⋅x=xcos(xy)−xsin(2xy). (5) ∂x∂z=tan yx1⋅sec2 yx⋅y1=ysin y2x2,∂y∂z=tan yx1⋅sec2 yx⋅(−y2x)=−y2sin y2x2x. (6) ∂x∂z=y(1+xy)y−1⋅y=y2(1+xy)y−1,∂y∂z=(1+xy)y[ln(1+xy)+1+xyxy]. (7) ∂x∂u=zyxzy−1,∂y∂u=z1xzyln x,∂z∂u=−z2yxzyln x. (8) ∂x∂u=1+(x−y)2zz(x−y)z−1,∂y∂u=−1+(x−y)2zz(x−y)z−1,∂z∂u=1+(x−y)2z(x−y)zln(x−y).
2. 设 T = 2 π l g ,求证 l ∂ T ∂ l + g ∂ T ∂ g = 0. \begin{aligned}&2. \ 设T=2\pi \sqrt{\frac{l}{g}},求证l\frac{\partial T}{\partial l}+g\frac{\partial T}{\partial g}=0.&\end{aligned} 2. 设T=2πgl,求证l∂l∂T+g∂g∂T=0.
解:
因为 ∂ T ∂ l = 2 π ⋅ 1 2 l g ⋅ 1 g = π g l , ∂ T ∂ g = 2 π ⋅ 1 2 l g ⋅ ( − l g 2 ) = − π g l g ,所以 l ∂ T ∂ l + g ∂ T ∂ g = π l g − π l g = 0. \begin{aligned} &\ \ 因为\frac{\partial T}{\partial l}=2\pi \cdot \frac{1}{2\sqrt{\frac{l}{g}}}\cdot \frac{1}{g}=\frac{\pi}{\sqrt{gl}},\frac{\partial T}{\partial g}=2\pi \cdot \frac{1}{2\sqrt{\frac{l}{g}}}\cdot \left(-\frac{l}{g^2}\right)=-\frac{\pi}{g}\sqrt{\frac{l}{g}},所以l\frac{\partial T}{\partial l}+g\frac{\partial T}{\partial g}=\pi \sqrt{\frac{l}{g}}-\pi \sqrt{\frac{l}{g}}=0. & \end{aligned} 因为∂l∂T=2π⋅2gl1⋅g1=glπ,∂g∂T=2π⋅2gl1⋅(−g2l)=−gπgl,所以l∂l∂T+g∂g∂T=πgl−πgl=0.
3. 设 z = e − ( 1 x + 1 y ) ,求证 x 2 ∂ z ∂ x + y 2 ∂ z ∂ y = 2 z . \begin{aligned}&3. \ 设z=e^{-(\frac{1}{x}+\frac{1}{y})},求证x^2\frac{\partial z}{\partial x}+y^2\frac{\partial z}{\partial y}=2z.&\end{aligned} 3. 设z=e−(x1+y1),求证x2∂x∂z+y2∂y∂z=2z.
解:
因为 ∂ z ∂ x = 1 x 2 e − ( 1 x + 1 y ) , ∂ z ∂ y = 1 y 2 e − ( 1 x + 1 y ) ,所以 x 2 ∂ z ∂ x + y 2 ∂ z ∂ y = 2 e − ( 1 x + 1 y ) = 2 z . \begin{aligned} &\ \ 因为\frac{\partial z}{\partial x}=\frac{1}{x^2}e^{-(\frac{1}{x}+\frac{1}{y})},\frac{\partial z}{\partial y}=\frac{1}{y^2}e^{-(\frac{1}{x}+\frac{1}{y})},所以x^2\frac{\partial z}{\partial x}+y^2\frac{\partial z}{\partial y}=2e^{-(\frac{1}{x}+\frac{1}{y})}=2z. & \end{aligned} 因为∂x∂z=x21e−(x1+y1),∂y∂z=y21e−(x1+y1),所以x2∂x∂z+y2∂y∂z=2e−(x1+y1)=2z.
4. 设 f ( x , y ) = x + ( y − 1 ) a r c s i n x y ,求 f x ( x , 1 ) . \begin{aligned}&4. \ 设f(x, \ y)=x+(y-1)arcsin\ \sqrt{\frac{x}{y}},求f_x(x, \ 1).&\end{aligned} 4. 设f(x, y)=x+(y−1)arcsin yx,求fx(x, 1).
解:
f x ( x , y ) = 1 + y − 1 1 − x y ⋅ 1 2 x y ⋅ 1 y , f x ( x , 1 ) = 1. \begin{aligned} &\ \ f_x(x, \ y)=1+\frac{y-1}{\sqrt{1-\frac{x}{y}}}\cdot \frac{1}{2\sqrt{\frac{x}{y}}}\cdot \frac{1}{y},f_x(x, \ 1)=1. & \end{aligned} fx(x, y)=1+1−yxy−1⋅2yx1⋅y1,fx(x, 1)=1.
5. 曲线 { z = x 2 + y 2 4 , y = 4 在点 ( 2 , 4 , 5 ) 处的切线对于 x 轴的倾角是多少? \begin{aligned}&5. \ 曲线\begin{cases}z=\frac{x^2+y^2}{4},\\\\y=4\end{cases}在点(2, \ 4, \ 5)处的切线对于x轴的倾角是多少?&\end{aligned} 5. 曲线⎩ ⎨ ⎧z=4x2+y2,y=4在点(2, 4, 5)处的切线对于x轴的倾角是多少?
解:
设 z = f ( x , y ) ,根据偏导数的几何意义, f x ( 2 , 4 ) 是曲线在点 ( 2 , 4 , 5 ) 处的切线对于 x 轴的斜率, 而 f x ( 2 , 4 ) = 1 2 x ∣ x = 2 = 1 ,即 k = t a n α = 1 ,得倾角 α = π 4 . \begin{aligned} &\ \ 设z=f(x, \ y),根据偏导数的几何意义,f_x(2, \ 4)是曲线在点(2, \ 4, \ 5)处的切线对于x轴的斜率,\\\\ &\ \ 而f_x(2, \ 4)=\frac{1}{2}x\bigg|_{x=2}=1,即k=tan\ \alpha=1,得倾角\alpha=\frac{\pi}{4}. & \end{aligned} 设z=f(x, y),根据偏导数的几何意义,fx(2, 4)是曲线在点(2, 4, 5)处的切线对于x轴的斜率, 而fx(2, 4)=21x∣ ∣x=2=1,即k=tan α=1,得倾角α=4π.
6. 求下列函数的 ∂ 2 z ∂ x 2 , ∂ 2 z ∂ y 2 , ∂ 2 z ∂ x ∂ y ; \begin{aligned}&6. \ 求下列函数的\frac{\partial^2 z}{\partial x^2},\frac{\partial^2 z}{\partial y^2},\frac{\partial^2 z}{\partial x \partial y};&\end{aligned} 6. 求下列函数的∂x2∂2z,∂y2∂2z,∂x∂y∂2z;
( 1 ) z = x 4 + y 4 − 4 x 2 y 2 ; ( 2 ) z = a r c t a n y x ; ( 3 ) z = y x . \begin{aligned} &\ \ (1)\ \ z=x^4+y^4-4x^2y^2;\\\\ &\ \ (2)\ \ z=arctan \frac{y}{x};\\\\ &\ \ (3)\ \ z=y^x. & \end{aligned} (1) z=x4+y4−4x2y2; (2) z=arctanxy; (3) z=yx.
解:
( 1 ) ∂ z ∂ x = 4 x 3 − 8 x y 2 , ∂ 2 z ∂ x 2 = 12 x 2 − 8 y 2 , ∂ z ∂ y = 4 y 3 − 8 x 2 y , ∂ 2 z ∂ y 2 = 12 y 2 − 8 x 2 , ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( 4 x 3 − 8 x y 2 ) = − 16 x y . ( 2 ) ∂ z ∂ x = 1 1 + ( y x ) 2 ⋅ ( − y x 2 ) = − y x 2 + y 2 , ∂ 2 z ∂ x 2 = 2 x y ( x 2 + y 2 ) 2 , ∂ z ∂ y = 1 1 + ( y x ) 2 ⋅ 1 x = x x 2 + y 2 , ∂ 2 z ∂ y 2 = − 2 x y ( x 2 + y 2 ) 2 , ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( − y x 2 + y 2 ) = − ( x 2 + y 2 ) − y ⋅ 2 y ( x 2 + y 2 ) 2 = y 2 − x 2 ( x 2 + y 2 ) 2 . ( 3 ) ∂ z ∂ x = y x l n y , ∂ 2 z ∂ x 2 = y x l n 2 y , ∂ z ∂ y = x y x − 1 , ∂ 2 z ∂ y 2 = x ( x − 1 ) y x − 2 , ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( y x l n y ) = y x − 1 ( 1 + x l n y ) . \begin{aligned} &\ \ (1)\ \frac{\partial z}{\partial x}=4x^3-8xy^2,\frac{\partial^2 z}{\partial x^2}=12x^2-8y^2,\frac{\partial z}{\partial y}=4y^3-8x^2y,\frac{\partial^2 z}{\partial y^2}=12y^2-8x^2,\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial y}(4x^3-8xy^2)=-16xy.\\\\ &\ \ (2)\ \frac{\partial z}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^2}\cdot \left(-\frac{y}{x^2}\right)=-\frac{y}{x^2+y^2},\frac{\partial^2 z}{\partial x^2}=\frac{2xy}{(x^2+y^2)^2},\frac{\partial z}{\partial y}=\frac{1}{1+\left(\frac{y}{x}\right)^2}\cdot \frac{1}{x}=\frac{x}{x^2+y^2},\frac{\partial^2 z}{\partial y^2}=-\frac{2xy}{(x^2+y^2)^2},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial y}\left(-\frac{y}{x^2+y^2}\right)=-\frac{(x^2+y^2)-y\cdot 2y}{(x^2+y^2)^2}=\frac{y^2-x^2}{(x^2+y^2)^2}.\\\\ &\ \ (3)\ \frac{\partial z}{\partial x}=y^xln\ y,\frac{\partial^2 z}{\partial x^2}=y^xln^2\ y,\frac{\partial z}{\partial y}=xy^{x-1},\frac{\partial^2 z}{\partial y^2}=x(x-1)y^{x-2},\frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial y}(y^xln\ y)=y^{x-1}(1+xln\ y). & \end{aligned} (1) ∂x∂z=4x3−8xy2,∂x2∂2z=12x2−8y2,∂y∂z=4y3−8x2y,∂y2∂2z=12y2−8x2, ∂x∂y∂2z=∂y∂(4x3−8xy2)=−16xy. (2) ∂x∂z=1+(xy)21⋅(−x2y)=−x2+y2y,∂x2∂2z=(x2+y2)22xy,∂y∂z=1+(xy)21⋅x1=x2+y2x,∂y2∂2z=−(x2+y2)22xy, ∂x∂y∂2z=∂y∂(−x2+y2y)=−(x2+y2)2(x2+y2)−y⋅2y=(x2+y2)2y2−x2. (3) ∂x∂z=yxln y,∂x2∂2z=yxln2 y,∂y∂z=xyx−1,∂y2∂2z=x(x−1)yx−2,∂x∂y∂2z=∂y∂(yxln y)=yx−1(1+xln y).
7. 设 f ( x , y , z ) = x y 2 + y z 2 + z x 2 ,求 f x x ( 0 , 0 , 1 ) , f x z ( 1 , 0 , 2 ) , f y z ( 0 , − 1 , 0 ) 及 f z z x ( 2 , 0 , 1 ) . \begin{aligned}&7. \ 设f(x, \ y, \ z)=xy^2+yz^2+zx^2,求f_{xx}(0, \ 0 , \ 1),f_{xz}(1, \ 0, \ 2),f_{yz}(0, \ -1, \ 0)及f_{zzx}(2, \ 0, \ 1).&\end{aligned} 7. 设f(x, y, z)=xy2+yz2+zx2,求fxx(0, 0, 1),fxz(1, 0, 2),fyz(0, −1, 0)及fzzx(2, 0, 1).
解:
因为 f x = y 2 + 2 x z , f x x = 2 z , f x z = 2 x , f y = 2 x y + z 2 , f y z = 2 z , f z = 2 y z + x 2 , f z z = 2 y , f z z x = 0 , 所以 f x x ( 0 , 0 , 1 ) = 2 , f x z ( 1 , 0 , 2 ) = 2 , f y z ( 0 , − 1 , 0 ) = 2 , f z z x ( 2 , 0 , 1 ) = 0. \begin{aligned} &\ \ 因为f_x=y^2+2xz,f_{xx}=2z,f_{xz}=2x,f_y=2xy+z^2,f_{yz}=2z,f_z=2yz+x^2,f_{zz}=2y,f_{zzx}=0,\\\\ &\ \ 所以f_{xx}(0, \ 0 , \ 1)=2,f_{xz}(1, \ 0, \ 2)=2,f_{yz}(0, \ -1, \ 0)=2,f_{zzx}(2, \ 0, \ 1)=0. & \end{aligned} 因为fx=y2+2xz,fxx=2z,fxz=2x,fy=2xy+z2,fyz=2z,fz=2yz+x2,fzz=2y,fzzx=0, 所以fxx(0, 0, 1)=2,fxz(1, 0, 2)=2,fyz(0, −1, 0)=2,fzzx(2, 0, 1)=0.
8. 设 z = x l n ( x y ) ,求 ∂ 3 z ∂ x 2 ∂ y 及 ∂ 3 z ∂ x ∂ y 2 . \begin{aligned}&8. \ 设z=xln(xy),求\frac{\partial^3 z}{\partial x^2 \partial y}及\frac{\partial^3 z}{\partial x \partial y^2}.&\end{aligned} 8. 设z=xln(xy),求∂x2∂y∂3z及∂x∂y2∂3z.
解:
∂ z ∂ x = l n ( x y ) + x ⋅ y x y = l n ( x y ) + 1 , ∂ 2 z ∂ x 2 = y x y = 1 x , ∂ 3 z ∂ x 2 ∂ y = 0 , ∂ 2 z ∂ x ∂ y = x x y = 1 y , ∂ 3 z ∂ x ∂ y 2 = − 1 y 2 . \begin{aligned} &\ \ \frac{\partial z}{\partial x}=ln(xy)+x\cdot \frac{y}{xy}=ln(xy)+1,\frac{\partial^2 z}{\partial x^2}=\frac{y}{xy}=\frac{1}{x},\frac{\partial^3 z}{\partial x^2 \partial y}=0,\frac{\partial^2 z}{\partial x \partial y}=\frac{x}{xy}=\frac{1}{y},\frac{\partial^3 z}{\partial x \partial y^2}=-\frac{1}{y^2}. & \end{aligned} ∂x∂z=ln(xy)+x⋅xyy=ln(xy)+1,∂x2∂2z=xyy=x1,∂x2∂y∂3z=0,∂x∂y∂2z=xyx=y1,∂x∂y2∂3z=−y21.
9. 验证: \begin{aligned}&9. \ 验证:&\end{aligned} 9. 验证:
( 1 ) y = e − k n 2 t s i n n x 满足 ∂ y ∂ t = k ∂ 2 y ∂ x 2 ; ( 2 ) r = x 2 + y 2 + z 2 满足 ∂ 2 r ∂ x 2 + ∂ 2 r ∂ y 2 + ∂ 2 r ∂ z 2 = 2 r . \begin{aligned} &\ \ (1)\ \ y=e^{-kn^2t}sin\ nx满足\frac{\partial y}{\partial t}=k\frac{\partial^2 y}{\partial x^2};\\\\ &\ \ (2)\ \ r=\sqrt{x^2+y^2+z^2}满足\frac{\partial^2 r}{\partial x^2}+\frac{\partial^2 r}{\partial y^2}+\frac{\partial^2 r}{\partial z^2}=\frac{2}{r}. & \end{aligned} (1) y=e−kn2tsin nx满足∂t∂y=k∂x2∂2y; (2) r=x2+y2+z2满足∂x2∂2r+∂y2∂2r+∂z2∂2r=r2.
解:
( 1 ) 因为 ∂ y ∂ t = − k n 2 e − k n 2 t s i n n x , ∂ y ∂ x = n e − k n 2 t c o s n x , ∂ 2 y ∂ x 2 = ∂ ∂ x ( n e − k n 2 t c o s n x ) = − n 2 e − k n 2 t s i n n x , 所以 ∂ y ∂ t = k ( − n 2 e − k n 2 t s i n n x ) = k ∂ 2 y ∂ x 2 . ( 2 ) 因为 ∂ r ∂ x = x x 2 + y 2 + r 2 = x r , ∂ 2 r ∂ x 2 = ∂ ∂ x ( x r ) = 1 r − x r 2 ⋅ x r = r 2 − x 2 r 3 ,根据函数关于自变量得对称性得 ∂ 2 r ∂ y 2 = r 2 − y 2 r 3 , ∂ 2 r ∂ z 2 = r 2 − z 2 r 3 ,所以 ∂ 2 r ∂ x 2 + ∂ 2 r ∂ y 2 + ∂ 2 r ∂ z 2 = r 2 − x 2 r 3 + r 2 − y 2 r 3 + r 2 − z 2 r 3 = 2 r . \begin{aligned} &\ \ (1)\ 因为\frac{\partial y}{\partial t}=-kn^2e^{-kn^2t}sin\ nx,\frac{\partial y}{\partial x}=ne^{-kn^2t}cos\ nx,\frac{\partial^2 y}{\partial x^2}=\frac{\partial}{\partial x}(ne^{-kn^2t}cos\ nx)=-n^2e^{-kn^2t}sin\ nx,\\\\ &\ \ \ \ \ \ \ \ 所以\frac{\partial y}{\partial t}=k(-n^2e^{-kn^2t}sin\ nx)=k\frac{\partial^2 y}{\partial x^2}.\\\\ &\ \ (2)\ 因为\frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^2+y^2+r^2}}=\frac{x}{r},\frac{\partial^2 r}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{x}{r}\right)=\frac{1}{r}-\frac{x}{r^2}\cdot \frac{x}{r}=\frac{r^2-x^2}{r^3},根据函数关于自变量得对称性得\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 r}{\partial y^2}=\frac{r^2-y^2}{r^3},\frac{\partial^2 r}{\partial z^2}=\frac{r^2-z^2}{r^3},所以\frac{\partial^2 r}{\partial x^2}+\frac{\partial^2 r}{\partial y^2}+\frac{\partial^2 r}{\partial z^2}=\frac{r^2-x^2}{r^3}+\frac{r^2-y^2}{r^3}+\frac{r^2-z^2}{r^3}=\frac{2}{r}. & \end{aligned} (1) 因为∂t∂y=−kn2e−kn2tsin nx,∂x∂y=ne−kn2tcos nx,∂x2∂2y=∂x∂(ne−kn2tcos nx)=−n2e−kn2tsin nx, 所以∂t∂y=k(−n2e−kn2tsin nx)=k∂x2∂2y. (2) 因为∂x∂r=x2+y2+r2x=rx,∂x2∂2r=∂x∂(rx)=r1−r2x⋅rx=r3r2−x2,根据函数关于自变量得对称性得 ∂y2∂2r=r3r2−y2,∂z2∂2r=r3r2−z2,所以∂x2∂2r+∂y2∂2r+∂z2∂2r=r3r2−x2+r3r2−y2+r3r2−z2=r2.