高等数学(第七版)同济大学 习题9-2 个人解答

高等数学(第七版)同济大学 习题9-2

 

1.  求下列函数的偏导数: \begin{aligned}&1. \ 求下列函数的偏导数:&\end{aligned} 1. 求下列函数的偏导数:

   ( 1 )    z = x 3 y − y 3 x ;                          ( 2 )    s = u 2 + v 2 u v ;    ( 3 )    z = l n ( x y ) ;                            ( 4 )    z = s i n ( x y ) + c o s 2 ( x y ) ;    ( 5 )    z = l n   t a n   x y ;                             ( 6 )    z = ( 1 + x y ) y ;    ( 7 )    u = x y z ;                                       ( 8 )    u = a r c t a n ( x − y ) z . \begin{aligned} &\ \ (1)\ \ z=x^3y-y^3x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ s=\frac{u^2+v^2}{uv};\\\\ &\ \ (3)\ \ z=\sqrt{ln(xy)};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ z=sin(xy)+cos^2(xy);\\\\ &\ \ (5)\ \ z=ln\ tan\ \frac{x}{y};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ z=(1+xy)^y;\\\\ &\ \ (7)\ \ u=x^{\frac{y}{z}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ u=arctan(x-y)^z. & \end{aligned}   (1)  z=x3yy3x                         (2)  s=uvu2+v2  (3)  z=ln(xy)                            (4)  z=sin(xy)+cos2(xy)  (5)  z=ln tan yx                            (6)  z=(1+xy)y  (7)  u=xzy                                      (8)  u=arctan(xy)z.

解:

   ( 1 )   ∂ z ∂ x = 3 y x 2 − y 3 , ∂ z ∂ y = x 3 − 3 x y 2 .    ( 2 )   ∂ s ∂ u = 1 v − v u 2 , ∂ z ∂ v = − u v 2 + 1 u ,因为 u 和 v 分别看作常数,可以直接约掉。    ( 3 )   ∂ z ∂ x = 1 2 l n ( x y ) ⋅ 1 x y ⋅ y = 1 2 x l n ( x y ) , ∂ z ∂ y = 1 2 l n ( x y ) ⋅ 1 x y ⋅ x = 1 2 y l n ( x y )    ( 4 )   ∂ z ∂ x = y c o s ( x y ) + 2 c o s ( x y ) ⋅ [ − s i n ( x y ) ] ⋅ y = y c o s ( x y ) − y s i n ( 2 x y ) ,          ∂ z ∂ y = x c o s ( x y ) + 2 c o s ( x y ) ⋅ [ − s i n ( x y ) ] ⋅ x = x c o s ( x y ) − x s i n ( 2 x y ) .    ( 5 )   ∂ z ∂ x = 1 t a n   x y ⋅ s e c 2   x y ⋅ 1 y = 2 y s i n   2 x y , ∂ z ∂ y = 1 t a n   x y ⋅ s e c 2   x y ⋅ ( − x y 2 ) = − 2 x y 2 s i n   2 x y .    ( 6 )   ∂ z ∂ x = y ( 1 + x y ) y − 1 ⋅ y = y 2 ( 1 + x y ) y − 1 , ∂ z ∂ y = ( 1 + x y ) y [ l n ( 1 + x y ) + x y 1 + x y ] .    ( 7 )   ∂ u ∂ x = y z x y z − 1 , ∂ u ∂ y = 1 z x y z l n   x , ∂ u ∂ z = − y z 2 x y z l n   x .    ( 8 )   ∂ u ∂ x = z ( x − y ) z − 1 1 + ( x − y ) 2 z , ∂ u ∂ y = − z ( x − y ) z − 1 1 + ( x − y ) 2 z , ∂ u ∂ z = ( x − y ) z l n ( x − y ) 1 + ( x − y ) 2 z . \begin{aligned} &\ \ (1)\ \frac{\partial z}{\partial x}=3yx^2-y3,\frac{\partial z}{\partial y}=x^3-3xy^2.\\\\ &\ \ (2)\ \frac{\partial s}{\partial u}=\frac{1}{v}-\frac{v}{u^2},\frac{\partial z}{\partial v}=-\frac{u}{v^2}+\frac{1}{u},因为u和v分别看作常数,可以直接约掉。\\\\ &\ \ (3)\ \frac{\partial z}{\partial x}=\frac{1}{2\sqrt{ln(xy)}}\cdot \frac{1}{xy}\cdot y=\frac{1}{2x\sqrt{ln(xy)}},\frac{\partial z}{\partial y}=\frac{1}{2\sqrt{ln(xy)}}\cdot \frac{1}{xy}\cdot x=\frac{1}{2y\sqrt{ln(xy)}}\\\\ &\ \ (4)\ \frac{\partial z}{\partial x}=ycos(xy)+2cos(xy)\cdot [-sin(xy)]\cdot y=ycos(xy)-ysin(2xy),\\\\ &\ \ \ \ \ \ \ \ \frac{\partial z}{\partial y}=xcos(xy)+2cos(xy)\cdot [-sin(xy)]\cdot x=xcos(xy)-xsin(2xy).\\\\ &\ \ (5)\ \frac{\partial z}{\partial x}=\frac{1}{tan\ \frac{x}{y}}\cdot sec^2\ \frac{x}{y}\cdot \frac{1}{y}=\frac{2}{ysin\ \frac{2x}{y}},\frac{\partial z}{\partial y}=\frac{1}{tan\ \frac{x}{y}}\cdot sec^2\ \frac{x}{y}\cdot \left(-\frac{x}{y^2}\right)=-\frac{2x}{y^2sin\ \frac{2x}{y}}.\\\\ &\ \ (6)\ \frac{\partial z}{\partial x}=y(1+xy)^{y-1}\cdot y=y^2(1+xy)^{y-1},\frac{\partial z}{\partial y}=(1+xy)^y\left[ln(1+xy)+\frac{xy}{1+xy}\right].\\\\ &\ \ (7)\ \frac{\partial u}{\partial x}=\frac{y}{z}x^{\frac{y}{z}-1},\frac{\partial u}{\partial y}=\frac{1}{z}x^{\frac{y}{z}}ln\ x,\frac{\partial u}{\partial z}=-\frac{y}{z^2}x^{\frac{y}{z}}ln\ x.\\\\ &\ \ (8)\ \frac{\partial u}{\partial x}=\frac{z(x-y)^{z-1}}{1+(x-y)^{2z}},\frac{\partial u}{\partial y}=-\frac{z(x-y)^{z-1}}{1+(x-y)^{2z}},\frac{\partial u}{\partial z}=\frac{(x-y)^zln(x-y)}{1+(x-y)^{2z}}. & \end{aligned}   (1) xz=3yx2y3yz=x33xy2.  (2) us=v1u2vvz=v2u+u1,因为uv分别看作常数,可以直接约掉。  (3) xz=2ln(xy) 1xy1y=2xln(xy) 1yz=2ln(xy) 1xy1x=2yln(xy) 1  (4) xz=ycos(xy)+2cos(xy)[sin(xy)]y=ycos(xy)ysin(2xy)        yz=xcos(xy)+2cos(xy)[sin(xy)]x=xcos(xy)xsin(2xy).  (5) xz=tan yx1sec2 yxy1=ysin y2x2yz=tan yx1sec2 yx(y2x)=y2sin y2x2x.  (6) xz=y(1+xy)y1y=y2(1+xy)y1yz=(1+xy)y[ln(1+xy)+1+xyxy].  (7) xu=zyxzy1yu=z1xzyln xzu=z2yxzyln x.  (8) xu=1+(xy)2zz(xy)z1yu=1+(xy)2zz(xy)z1zu=1+(xy)2z(xy)zln(xy).


2.  设 T = 2 π l g ,求证 l ∂ T ∂ l + g ∂ T ∂ g = 0. \begin{aligned}&2. \ 设T=2\pi \sqrt{\frac{l}{g}},求证l\frac{\partial T}{\partial l}+g\frac{\partial T}{\partial g}=0.&\end{aligned} 2. T=2πgl ,求证llT+ggT=0.

解:

  因为 ∂ T ∂ l = 2 π ⋅ 1 2 l g ⋅ 1 g = π g l , ∂ T ∂ g = 2 π ⋅ 1 2 l g ⋅ ( − l g 2 ) = − π g l g ,所以 l ∂ T ∂ l + g ∂ T ∂ g = π l g − π l g = 0. \begin{aligned} &\ \ 因为\frac{\partial T}{\partial l}=2\pi \cdot \frac{1}{2\sqrt{\frac{l}{g}}}\cdot \frac{1}{g}=\frac{\pi}{\sqrt{gl}},\frac{\partial T}{\partial g}=2\pi \cdot \frac{1}{2\sqrt{\frac{l}{g}}}\cdot \left(-\frac{l}{g^2}\right)=-\frac{\pi}{g}\sqrt{\frac{l}{g}},所以l\frac{\partial T}{\partial l}+g\frac{\partial T}{\partial g}=\pi \sqrt{\frac{l}{g}}-\pi \sqrt{\frac{l}{g}}=0. & \end{aligned}   因为lT=2π2gl 1g1=gl πgT=2π2gl 1(g2l)=gπgl ,所以llT+ggT=πgl πgl =0.


3.  设 z = e − ( 1 x + 1 y ) ,求证 x 2 ∂ z ∂ x + y 2 ∂ z ∂ y = 2 z . \begin{aligned}&3. \ 设z=e^{-(\frac{1}{x}+\frac{1}{y})},求证x^2\frac{\partial z}{\partial x}+y^2\frac{\partial z}{\partial y}=2z.&\end{aligned} 3. z=e(x1+y1),求证x2xz+y2yz=2z.

解:

  因为 ∂ z ∂ x = 1 x 2 e − ( 1 x + 1 y ) , ∂ z ∂ y = 1 y 2 e − ( 1 x + 1 y ) ,所以 x 2 ∂ z ∂ x + y 2 ∂ z ∂ y = 2 e − ( 1 x + 1 y ) = 2 z . \begin{aligned} &\ \ 因为\frac{\partial z}{\partial x}=\frac{1}{x^2}e^{-(\frac{1}{x}+\frac{1}{y})},\frac{\partial z}{\partial y}=\frac{1}{y^2}e^{-(\frac{1}{x}+\frac{1}{y})},所以x^2\frac{\partial z}{\partial x}+y^2\frac{\partial z}{\partial y}=2e^{-(\frac{1}{x}+\frac{1}{y})}=2z. & \end{aligned}   因为xz=x21e(x1+y1)yz=y21e(x1+y1),所以x2xz+y2yz=2e(x1+y1)=2z.


4.  设 f ( x ,   y ) = x + ( y − 1 ) a r c s i n   x y ,求 f x ( x ,   1 ) . \begin{aligned}&4. \ 设f(x, \ y)=x+(y-1)arcsin\ \sqrt{\frac{x}{y}},求f_x(x, \ 1).&\end{aligned} 4. f(x, y)=x+(y1)arcsin yx ,求fx(x, 1).

解:

   f x ( x ,   y ) = 1 + y − 1 1 − x y ⋅ 1 2 x y ⋅ 1 y , f x ( x ,   1 ) = 1. \begin{aligned} &\ \ f_x(x, \ y)=1+\frac{y-1}{\sqrt{1-\frac{x}{y}}}\cdot \frac{1}{2\sqrt{\frac{x}{y}}}\cdot \frac{1}{y},f_x(x, \ 1)=1. & \end{aligned}   fx(x, y)=1+1yx y12yx 1y1fx(x, 1)=1.


5.  曲线 { z = x 2 + y 2 4 , y = 4 在点 ( 2 ,   4 ,   5 ) 处的切线对于 x 轴的倾角是多少? \begin{aligned}&5. \ 曲线\begin{cases}z=\frac{x^2+y^2}{4},\\\\y=4\end{cases}在点(2, \ 4, \ 5)处的切线对于x轴的倾角是多少?&\end{aligned} 5. 曲线 z=4x2+y2y=4在点(2, 4, 5)处的切线对于x轴的倾角是多少?

解:

  设 z = f ( x ,   y ) ,根据偏导数的几何意义, f x ( 2 ,   4 ) 是曲线在点 ( 2 ,   4 ,   5 ) 处的切线对于 x 轴的斜率,   而 f x ( 2 ,   4 ) = 1 2 x ∣ x = 2 = 1 ,即 k = t a n   α = 1 ,得倾角 α = π 4 . \begin{aligned} &\ \ 设z=f(x, \ y),根据偏导数的几何意义,f_x(2, \ 4)是曲线在点(2, \ 4, \ 5)处的切线对于x轴的斜率,\\\\ &\ \ 而f_x(2, \ 4)=\frac{1}{2}x\bigg|_{x=2}=1,即k=tan\ \alpha=1,得倾角\alpha=\frac{\pi}{4}. & \end{aligned}   z=f(x, y),根据偏导数的几何意义,fx(2, 4)是曲线在点(2, 4, 5)处的切线对于x轴的斜率,  fx(2, 4)=21x x=2=1,即k=tan α=1,得倾角α=4π.


6.  求下列函数的 ∂ 2 z ∂ x 2 , ∂ 2 z ∂ y 2 , ∂ 2 z ∂ x ∂ y ; \begin{aligned}&6. \ 求下列函数的\frac{\partial^2 z}{\partial x^2},\frac{\partial^2 z}{\partial y^2},\frac{\partial^2 z}{\partial x \partial y};&\end{aligned} 6. 求下列函数的x22zy22zxy2z

   ( 1 )    z = x 4 + y 4 − 4 x 2 y 2 ;    ( 2 )    z = a r c t a n y x ;    ( 3 )    z = y x . \begin{aligned} &\ \ (1)\ \ z=x^4+y^4-4x^2y^2;\\\\ &\ \ (2)\ \ z=arctan \frac{y}{x};\\\\ &\ \ (3)\ \ z=y^x. & \end{aligned}   (1)  z=x4+y44x2y2  (2)  z=arctanxy  (3)  z=yx.

解:

   ( 1 )   ∂ z ∂ x = 4 x 3 − 8 x y 2 , ∂ 2 z ∂ x 2 = 12 x 2 − 8 y 2 , ∂ z ∂ y = 4 y 3 − 8 x 2 y , ∂ 2 z ∂ y 2 = 12 y 2 − 8 x 2 ,          ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( 4 x 3 − 8 x y 2 ) = − 16 x y .    ( 2 )   ∂ z ∂ x = 1 1 + ( y x ) 2 ⋅ ( − y x 2 ) = − y x 2 + y 2 , ∂ 2 z ∂ x 2 = 2 x y ( x 2 + y 2 ) 2 , ∂ z ∂ y = 1 1 + ( y x ) 2 ⋅ 1 x = x x 2 + y 2 , ∂ 2 z ∂ y 2 = − 2 x y ( x 2 + y 2 ) 2 ,          ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( − y x 2 + y 2 ) = − ( x 2 + y 2 ) − y ⋅ 2 y ( x 2 + y 2 ) 2 = y 2 − x 2 ( x 2 + y 2 ) 2 .    ( 3 )   ∂ z ∂ x = y x l n   y , ∂ 2 z ∂ x 2 = y x l n 2   y , ∂ z ∂ y = x y x − 1 , ∂ 2 z ∂ y 2 = x ( x − 1 ) y x − 2 , ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( y x l n   y ) = y x − 1 ( 1 + x l n   y ) . \begin{aligned} &\ \ (1)\ \frac{\partial z}{\partial x}=4x^3-8xy^2,\frac{\partial^2 z}{\partial x^2}=12x^2-8y^2,\frac{\partial z}{\partial y}=4y^3-8x^2y,\frac{\partial^2 z}{\partial y^2}=12y^2-8x^2,\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial y}(4x^3-8xy^2)=-16xy.\\\\ &\ \ (2)\ \frac{\partial z}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^2}\cdot \left(-\frac{y}{x^2}\right)=-\frac{y}{x^2+y^2},\frac{\partial^2 z}{\partial x^2}=\frac{2xy}{(x^2+y^2)^2},\frac{\partial z}{\partial y}=\frac{1}{1+\left(\frac{y}{x}\right)^2}\cdot \frac{1}{x}=\frac{x}{x^2+y^2},\frac{\partial^2 z}{\partial y^2}=-\frac{2xy}{(x^2+y^2)^2},\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial y}\left(-\frac{y}{x^2+y^2}\right)=-\frac{(x^2+y^2)-y\cdot 2y}{(x^2+y^2)^2}=\frac{y^2-x^2}{(x^2+y^2)^2}.\\\\ &\ \ (3)\ \frac{\partial z}{\partial x}=y^xln\ y,\frac{\partial^2 z}{\partial x^2}=y^xln^2\ y,\frac{\partial z}{\partial y}=xy^{x-1},\frac{\partial^2 z}{\partial y^2}=x(x-1)y^{x-2},\frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial y}(y^xln\ y)=y^{x-1}(1+xln\ y). & \end{aligned}   (1) xz=4x38xy2x22z=12x28y2yz=4y38x2yy22z=12y28x2        xy2z=y(4x38xy2)=16xy.  (2) xz=1+(xy)21(x2y)=x2+y2yx22z=(x2+y2)22xyyz=1+(xy)21x1=x2+y2xy22z=(x2+y2)22xy        xy2z=y(x2+y2y)=(x2+y2)2(x2+y2)y2y=(x2+y2)2y2x2.  (3) xz=yxln yx22z=yxln2 yyz=xyx1y22z=x(x1)yx2xy2z=y(yxln y)=yx1(1+xln y).


7.  设 f ( x ,   y ,   z ) = x y 2 + y z 2 + z x 2 ,求 f x x ( 0 ,   0 ,   1 ) , f x z ( 1 ,   0 ,   2 ) , f y z ( 0 ,   − 1 ,   0 ) 及 f z z x ( 2 ,   0 ,   1 ) . \begin{aligned}&7. \ 设f(x, \ y, \ z)=xy^2+yz^2+zx^2,求f_{xx}(0, \ 0 , \ 1),f_{xz}(1, \ 0, \ 2),f_{yz}(0, \ -1, \ 0)及f_{zzx}(2, \ 0, \ 1).&\end{aligned} 7. f(x, y, z)=xy2+yz2+zx2,求fxx(0, 0, 1)fxz(1, 0, 2)fyz(0, 1, 0)fzzx(2, 0, 1).

解:

  因为 f x = y 2 + 2 x z , f x x = 2 z , f x z = 2 x , f y = 2 x y + z 2 , f y z = 2 z , f z = 2 y z + x 2 , f z z = 2 y , f z z x = 0 ,   所以 f x x ( 0 ,   0 ,   1 ) = 2 , f x z ( 1 ,   0 ,   2 ) = 2 , f y z ( 0 ,   − 1 ,   0 ) = 2 , f z z x ( 2 ,   0 ,   1 ) = 0. \begin{aligned} &\ \ 因为f_x=y^2+2xz,f_{xx}=2z,f_{xz}=2x,f_y=2xy+z^2,f_{yz}=2z,f_z=2yz+x^2,f_{zz}=2y,f_{zzx}=0,\\\\ &\ \ 所以f_{xx}(0, \ 0 , \ 1)=2,f_{xz}(1, \ 0, \ 2)=2,f_{yz}(0, \ -1, \ 0)=2,f_{zzx}(2, \ 0, \ 1)=0. & \end{aligned}   因为fx=y2+2xzfxx=2zfxz=2xfy=2xy+z2fyz=2zfz=2yz+x2fzz=2yfzzx=0  所以fxx(0, 0, 1)=2fxz(1, 0, 2)=2fyz(0, 1, 0)=2fzzx(2, 0, 1)=0.


8.  设 z = x l n ( x y ) ,求 ∂ 3 z ∂ x 2 ∂ y 及 ∂ 3 z ∂ x ∂ y 2 . \begin{aligned}&8. \ 设z=xln(xy),求\frac{\partial^3 z}{\partial x^2 \partial y}及\frac{\partial^3 z}{\partial x \partial y^2}.&\end{aligned} 8. z=xln(xy),求x2y3zxy23z.

解:

   ∂ z ∂ x = l n ( x y ) + x ⋅ y x y = l n ( x y ) + 1 , ∂ 2 z ∂ x 2 = y x y = 1 x , ∂ 3 z ∂ x 2 ∂ y = 0 , ∂ 2 z ∂ x ∂ y = x x y = 1 y , ∂ 3 z ∂ x ∂ y 2 = − 1 y 2 . \begin{aligned} &\ \ \frac{\partial z}{\partial x}=ln(xy)+x\cdot \frac{y}{xy}=ln(xy)+1,\frac{\partial^2 z}{\partial x^2}=\frac{y}{xy}=\frac{1}{x},\frac{\partial^3 z}{\partial x^2 \partial y}=0,\frac{\partial^2 z}{\partial x \partial y}=\frac{x}{xy}=\frac{1}{y},\frac{\partial^3 z}{\partial x \partial y^2}=-\frac{1}{y^2}. & \end{aligned}   xz=ln(xy)+xxyy=ln(xy)+1x22z=xyy=x1x2y3z=0xy2z=xyx=y1xy23z=y21.


9.  验证: \begin{aligned}&9. \ 验证:&\end{aligned} 9. 验证:

   ( 1 )    y = e − k n 2 t s i n   n x 满足 ∂ y ∂ t = k ∂ 2 y ∂ x 2 ;    ( 2 )    r = x 2 + y 2 + z 2 满足 ∂ 2 r ∂ x 2 + ∂ 2 r ∂ y 2 + ∂ 2 r ∂ z 2 = 2 r . \begin{aligned} &\ \ (1)\ \ y=e^{-kn^2t}sin\ nx满足\frac{\partial y}{\partial t}=k\frac{\partial^2 y}{\partial x^2};\\\\ &\ \ (2)\ \ r=\sqrt{x^2+y^2+z^2}满足\frac{\partial^2 r}{\partial x^2}+\frac{\partial^2 r}{\partial y^2}+\frac{\partial^2 r}{\partial z^2}=\frac{2}{r}. & \end{aligned}   (1)  y=ekn2tsin nx满足ty=kx22y  (2)  r=x2+y2+z2 满足x22r+y22r+z22r=r2.

解:

   ( 1 )  因为 ∂ y ∂ t = − k n 2 e − k n 2 t s i n   n x , ∂ y ∂ x = n e − k n 2 t c o s   n x , ∂ 2 y ∂ x 2 = ∂ ∂ x ( n e − k n 2 t c o s   n x ) = − n 2 e − k n 2 t s i n   n x ,         所以 ∂ y ∂ t = k ( − n 2 e − k n 2 t s i n   n x ) = k ∂ 2 y ∂ x 2 .    ( 2 )  因为 ∂ r ∂ x = x x 2 + y 2 + r 2 = x r , ∂ 2 r ∂ x 2 = ∂ ∂ x ( x r ) = 1 r − x r 2 ⋅ x r = r 2 − x 2 r 3 ,根据函数关于自变量得对称性得          ∂ 2 r ∂ y 2 = r 2 − y 2 r 3 , ∂ 2 r ∂ z 2 = r 2 − z 2 r 3 ,所以 ∂ 2 r ∂ x 2 + ∂ 2 r ∂ y 2 + ∂ 2 r ∂ z 2 = r 2 − x 2 r 3 + r 2 − y 2 r 3 + r 2 − z 2 r 3 = 2 r . \begin{aligned} &\ \ (1)\ 因为\frac{\partial y}{\partial t}=-kn^2e^{-kn^2t}sin\ nx,\frac{\partial y}{\partial x}=ne^{-kn^2t}cos\ nx,\frac{\partial^2 y}{\partial x^2}=\frac{\partial}{\partial x}(ne^{-kn^2t}cos\ nx)=-n^2e^{-kn^2t}sin\ nx,\\\\ &\ \ \ \ \ \ \ \ 所以\frac{\partial y}{\partial t}=k(-n^2e^{-kn^2t}sin\ nx)=k\frac{\partial^2 y}{\partial x^2}.\\\\ &\ \ (2)\ 因为\frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^2+y^2+r^2}}=\frac{x}{r},\frac{\partial^2 r}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{x}{r}\right)=\frac{1}{r}-\frac{x}{r^2}\cdot \frac{x}{r}=\frac{r^2-x^2}{r^3},根据函数关于自变量得对称性得\\\\ &\ \ \ \ \ \ \ \ \frac{\partial^2 r}{\partial y^2}=\frac{r^2-y^2}{r^3},\frac{\partial^2 r}{\partial z^2}=\frac{r^2-z^2}{r^3},所以\frac{\partial^2 r}{\partial x^2}+\frac{\partial^2 r}{\partial y^2}+\frac{\partial^2 r}{\partial z^2}=\frac{r^2-x^2}{r^3}+\frac{r^2-y^2}{r^3}+\frac{r^2-z^2}{r^3}=\frac{2}{r}. & \end{aligned}   (1) 因为ty=kn2ekn2tsin nxxy=nekn2tcos nxx22y=x(nekn2tcos nx)=n2ekn2tsin nx        所以ty=k(n2ekn2tsin nx)=kx22y.  (2) 因为xr=x2+y2+r2 x=rxx22r=x(rx)=r1r2xrx=r3r2x2,根据函数关于自变量得对称性得        y22r=r3r2y2z22r=r3r2z2,所以x22r+y22r+z22r=r3r2x2+r3r2y2+r3r2z2=r2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值