高等数学(第七版)同济大学 总习题九(前10题)
1. 在“充分”“必要”和“充分必要”三者中选择一个正确的填入下列空格内: \begin{aligned}&1. \ 在“充分”“必要”和“充分必要”三者中选择一个正确的填入下列空格内:&\end{aligned} 1. 在“充分”“必要”和“充分必要”三者中选择一个正确的填入下列空格内:
( 1 ) f ( x , y ) 在点 ( x , y ) 可微分是 f ( x , y ) 在该点连续的 _ _ _ _ 条件, f ( x , y ) 在点 ( x , y ) 连续是 f ( x , y ) 在该点 可微分的 _ _ _ _ 条件; ( 2 ) z = f ( x , y ) 在点 ( x , y ) 的偏导数 ∂ z ∂ x 及 ∂ z ∂ y 存在是 f ( x , y ) 在该点可微分的 _ _ _ _ 条件, z = f ( x , y ) 在 点 ( x , y ) 可微分是函数在该点的偏导数 ∂ z ∂ x 及 ∂ z ∂ y 存在的 _ _ _ _ 条件; ( 3 ) z = f ( x , y ) 的偏导数 ∂ z ∂ x 及 ∂ z ∂ y 在点 ( x , y ) 存在且连续是 f ( x , y ) 在该点可微分的 _ _ _ _ 条件; ( 4 ) 函数 z = f ( x , y ) 的两个二阶混合偏导数 ∂ 2 z ∂ x ∂ y 及 ∂ 2 z ∂ y ∂ x 在区域 D 内连续是这两个二阶混合偏导数 在 D 内相等的 _ _ _ _ 条件 . \begin{aligned} &\ \ (1)\ \ f(x, \ y)在点(x, \ y)可微分是f(x, \ y)在该点连续的\_\_\_\_条件,f(x, \ y)在点(x, \ y)连续是f(x, \ y)在该点\\\\ &\ \ \ \ \ \ \ \ 可微分的\_\_\_\_条件;\\\\ &\ \ (2)\ \ z=f(x, \ y)在点(x, \ y)的偏导数\frac{\partial z}{\partial x}及\frac{\partial z}{\partial y}存在是f(x, \ y)在该点可微分的\_\_\_\_条件,z=f(x, \ y)在\\\\ &\ \ \ \ \ \ \ \ 点(x, \ y)可微分是函数在该点的偏导数\frac{\partial z}{\partial x}及\frac{\partial z}{\partial y}存在的\_\_\_\_条件;\\\\ &\ \ (3)\ \ z=f(x, \ y)的偏导数\frac{\partial z}{\partial x}及\frac{\partial z}{\partial y}在点(x, \ y)存在且连续是f(x, \ y)在该点可微分的\_\_\_\_条件;\\\\ &\ \ (4)\ \ 函数z=f(x, \ y)的两个二阶混合偏导数\frac{\partial^2 z}{\partial x\partial y}及\frac{\partial^2 z}{\partial y\partial x}在区域D内连续是这两个二阶混合偏导数\\\\ &\ \ \ \ \ \ \ \ \ 在D内相等的\_\_\_\_条件. & \end{aligned} (1) f(x, y)在点(x, y)可微分是f(x, y)在该点连续的____条件,f(x, y)在点(x, y)连续是f(x, y)在该点 可微分的____条件; (2) z=f(x, y)在点(x, y)的偏导数∂x∂z及∂y∂z存在是f(x, y)在该点可微分的____条件,z=f(x, y)在 点(x, y)可微分是函数在该点的偏导数∂x∂z及∂y∂z存在的____条件; (3) z=f(x, y)的偏导数∂x∂z及∂y∂z在点(x, y)存在且连续是f(x, y)在该点可微分的____条件; (4) 函数z=f(x, y)的两个二阶混合偏导数∂x∂y∂2z及∂y∂x∂2z在区域D内连续是这两个二阶混合偏导数 在D内相等的____条件.
解:
( 1 ) 充分,必要 ( 2 ) 必要,充分 ( 3 ) 充分 ( 4 ) 充分 . \begin{aligned} &\ \ (1)\ 充分,必要\\\\ &\ \ (2)\ 必要,充分\\\\ &\ \ (3)\ 充分\\\\ &\ \ (4)\ 充分. & \end{aligned} (1) 充分,必要 (2) 必要,充分 (3) 充分 (4) 充分.
2. 下题中给出了四个结论,从中选出一个正确的结论: \begin{aligned}&2. \ 下题中给出了四个结论,从中选出一个正确的结论:&\end{aligned} 2. 下题中给出了四个结论,从中选出一个正确的结论:
设函数 f ( x , y ) 在点 ( 0 , 0 ) 的某领域内有定义,且 f x ( 0 , 0 ) = 3 , f y ( 0 , 0 ) = − 1 ,则有 ( ) : ( A ) d z ∣ ( 0 , 0 ) = 3 d x − d y ( B ) 曲面 z = f ( x , y ) 在点 ( 0 , 0 , f ( 0 , 0 ) ) 的一个法向量为 ( 3 , − 1 , 1 ) ( C ) 曲线 { z = f ( x , y ) , y = 0 在点 ( 0 , 0 , f ( 0 , 0 ) ) 的一个切向量为 ( 1 , 0 , 3 ) ( D ) 曲线 { z = f ( x , y ) , y = 0 在点 ( 0 , 0 , f ( 0 , 0 ) ) 的一个切向量为 ( 3 , 0 , 1 ) \begin{aligned} &\ \ 设函数f(x, \ y)在点(0, \ 0)的某领域内有定义,且f_x(0, \ 0)=3,f_y(0, \ 0)=-1,则有(\ \ \ \ ):\\\\ &\ \ (A)\ \ dz|_{(0, \ 0)}=3dx-dy\\\\ &\ \ (B)\ \ 曲面z=f(x, \ y)在点(0, \ 0, \ f(0, \ 0))的一个法向量为(3, \ -1, \ 1)\\\\ &\ \ (C)\ \ 曲线\begin{cases}z=f(x, \ y),\\\\y=0\end{cases}在点(0, \ 0, \ f(0, \ 0))的一个切向量为(1, \ 0, \ 3)\\\\ &\ \ (D)\ \ 曲线\begin{cases}z=f(x, \ y),\\\\y=0\end{cases}在点(0, \ 0, \ f(0, \ 0))的一个切向量为(3, \ 0, \ 1) & \end{aligned} 设函数f(x, y)在点(0, 0)的某领域内有定义,且fx(0, 0)=3,fy(0, 0)=−1,则有( ): (A) dz∣(0, 0)=3dx−dy (B) 曲面z=f(x, y)在点(0, 0, f(0, 0))的一个法向量为(3, −1, 1) (C) 曲线⎩ ⎨ ⎧z=f(x, y),y=0在点(0, 0, f(0, 0))的一个切向量为(1, 0, 3) (D) 曲线⎩ ⎨ ⎧z=f(x, y),y=0在点(0, 0, f(0, 0))的一个切向量为(3, 0, 1)
解:
函数偏导数存在不一定可微分,从而不能保证曲面存在切平面,所以 A 、 B 不对, 取 x 为参数,曲线 x = x , y = 0 , z = f ( x , 0 ) 在点 ( 0 , 0 , f ( 0 , 0 ) ) 处的一个切向量为 ( 1 , 0 , 3 ) ,选 C . \begin{aligned} &\ \ 函数偏导数存在不一定可微分,从而不能保证曲面存在切平面,所以A、B不对,\\\\ &\ \ 取x为参数,曲线x=x,y=0,z=f(x, \ 0)在点(0, \ 0, \ f(0, \ 0))处的一个切向量为(1, \ 0, \ 3),选C. & \end{aligned} 函数偏导数存在不一定可微分,从而不能保证曲面存在切平面,所以A、B不对, 取x为参数,曲线x=x,y=0,z=f(x, 0)在点(0, 0, f(0, 0))处的一个切向量为(1, 0, 3),选C.
3. 求函数 f ( x , y ) = 4 x − y 2 l n ( 1 − x 2 − y 2 ) 的定义域,并求 lim ( x , y ) → ( 1 2 , 0 ) f ( x , y ) . \begin{aligned}&3. \ 求函数f(x, \ y)=\frac{\sqrt{4x-y^2}}{ln(1-x^2-y^2)}的定义域,并求\lim_{(x, \ y)\rightarrow(\frac{1}{2}, \ 0)}f(x, \ y).&\end{aligned} 3. 求函数f(x, y)=ln(1−x2−y2)4x−y2的定义域,并求(x, y)→(21, 0)limf(x, y).
解:
函数的定义域为 D = { ( x , y ) ∣ 0 < x 2 + y 2 < 1 , y 2 ≤ 4 x } ,因为点 ( 1 2 , 0 ) ∈ D , f ( x , y ) 为初等函数, 所以 lim ( x , y ) → ( 1 2 , 0 ) f ( x , y ) = f ( 1 2 , 0 ) = 2 l n 3 4 = 2 l n 3 − l n 4 . \begin{aligned} &\ \ 函数的定义域为D=\{(x, \ y)\ |\ 0 \lt x^2+y^2 \lt 1, \ y^2 \le 4x\},因为点\left(\frac{1}{2}, \ 0\right) \in D,f(x, \ y)为初等函数,\\\\ &\ \ 所以\lim_{(x, \ y)\rightarrow(\frac{1}{2}, \ 0)}f(x, \ y)=f\left(\frac{1}{2}, \ 0\right)=\frac{\sqrt{2}}{ln\frac{3}{4}}=\frac{\sqrt{2}}{ln\ 3-ln\ 4}. & \end{aligned} 函数的定义域为D={(x, y) ∣ 0<x2+y2<1, y2≤4x},因为点(21, 0)∈D,f(x, y)为初等函数, 所以(x, y)→(21, 0)limf(x, y)=f(21, 0)=ln432=ln 3−ln 42.
4. 证明极限 lim ( x , y ) → ( 0 , 0 ) x y 2 x 2 + y 4 不存在 . \begin{aligned}&4. \ 证明极限\lim_{(x, \ y)\rightarrow(0, \ 0)}\frac{xy^2}{x^2+y^4}不存在.&\end{aligned} 4. 证明极限(x, y)→(0, 0)limx2+y4xy2不存在.
解:
取两条趋于 ( 0 , 0 ) 的路径, c 1 : x = 0 , c 2 : y 2 = x , lim ( x , y ) → ( 0 , 0 ) ( x , y ) → c 1 f ( x , y ) = lim ( x , y ) → ( 0 , 0 ) x = 0 x y 2 x 2 + y 4 = 0 , lim ( x , y ) → ( 0 , 0 ) ( x , y ) → c 2 f ( x , y ) = lim ( x , y ) → ( 0 , 0 ) y 2 = x x y 2 x 2 + y 4 = lim x → 0 x 2 x 2 + x 2 = 1 2 , 因为 ( x , y ) 分别沿 c 1 , c 2 趋于 ( 0 , 0 ) 时 f ( x , y ) 的极限不相等,所以 lim ( x , y ) → ( 0 , 0 ) x y 2 x 2 + y 4 不存在 . \begin{aligned} &\ \ 取两条趋于(0, \ 0)的路径,c_1:\ x=0,c_2:\ y^2=x,\\\\ &\ \ \lim_{(x, \ y)\rightarrow(0, \ 0)\atop (x, \ y)\rightarrow c_1}f(x, \ y)=\lim_{(x, \ y)\rightarrow(0, \ 0)\atop x=0}\frac{xy^2}{x^2+y^4}=0,\lim_{(x, \ y)\rightarrow(0, \ 0)\atop (x, \ y)\rightarrow c_2}f(x, \ y)=\lim_{(x, \ y)\rightarrow(0, \ 0)\atop y^2=x}\frac{xy^2}{x^2+y^4}=\lim_{x \rightarrow 0}\frac{x^2}{x^2+x^2}=\frac{1}{2},\\\\ &\ \ 因为(x, \ y)分别沿c_1,c_2趋于(0, \ 0)时f(x, \ y)的极限不相等,所以\lim_{(x, \ y)\rightarrow(0, \ 0)}\frac{xy^2}{x^2+y^4}不存在. & \end{aligned} 取两条趋于(0, 0)的路径,c1: x=0,c2: y2=x, (x, y)→c1(x, y)→(0, 0)limf(x, y)=x=0(x, y)→(0, 0)limx2+y4xy2=0,(x, y)→c2(x, y)→(0, 0)limf(x, y)=y2=x(x, y)→(0, 0)limx2+y4xy2=x→0limx2+x2x2=21, 因为(x, y)分别沿c1,c2趋于(0, 0)时f(x, y)的极限不相等,所以(x, y)→(0, 0)limx2+y4xy2不存在.
5. 设 f ( x , y ) = { x 2 y x 2 + y 2 , x 2 + y 2 ≠ 0 , 0 , x 2 + y 2 = 0. ,求 f x ( x , y ) 及 f y ( x , y ) . \begin{aligned}&5. \ 设f(x, \ y)=\begin{cases}\frac{x^2y}{x^2+y^2},x^2+y^2\neq 0,\\\\0,x^2+y^2=0.\end{cases},求f_x(x, \ y)及f_y(x, \ y).&\end{aligned} 5. 设f(x, y)=⎩ ⎨ ⎧x2+y2x2y,x2+y2=0,0,x2+y2=0.,求fx(x, y)及fy(x, y).
解:
当 x 2 + y 2 ≠ 0 时, f x ( x , y ) = ∂ ∂ x ( x 2 y x 2 + y 2 ) = 2 x y ( x 2 + y 2 ) − x 2 y ⋅ 2 x ( x 2 + y 2 ) 2 = 2 x y 3 ( x 2 + y 2 ) 2 , f y ( x , y ) = ∂ ∂ y ( x 2 y x 2 + y 2 ) = x 2 ( x 2 + y 2 ) − x 2 y ⋅ 2 y ( x 2 + y 2 ) 2 = x 2 ( x 2 − y 2 ) ( x 2 + y 2 ) 2 , 当 x 2 + y 2 = 0 时, f x ( 0 , 0 ) = lim Δ x → 0 f ( 0 + Δ x , 0 ) − f ( 0 , 0 ) Δ x = lim Δ x → 0 0 Δ x = 0 , f y ( 0 , 0 ) = lim Δ y → 0 f ( 0 + Δ y , 0 ) − f ( 0 , 0 ) Δ y = lim Δ y → 0 0 Δ y = 0 , 所以, f x ( x , y ) = { 2 x y 3 ( x 2 + y 2 ) 2 , x 2 + y 2 ≠ 0 , 0 , x 2 + y 2 = 0. , f y ( x , y ) = { x 2 ( x 2 − y 2 ) ( x 2 + y 2 ) 2 , x 2 + y 2 ≠ 0 , 0 , x 2 + y 2 = 0. \begin{aligned} &\ \ 当x^2+y^2 \neq 0时,\\\\ &\ \ f_x(x, \ y)=\frac{\partial}{\partial x}\left(\frac{x^2y}{x^2+y^2}\right)=\frac{2xy(x^2+y^2)-x^2y\cdot 2x}{(x^2+y^2)^2}=\frac{2xy^3}{(x^2+y^2)^2},\\\\ &\ \ f_y(x, \ y)=\frac{\partial}{\partial y}\left(\frac{x^2y}{x^2+y^2}\right)=\frac{x^2(x^2+y^2)-x^2y\cdot 2y}{(x^2+y^2)^2}=\frac{x^2(x^2-y^2)}{(x^2+y^2)^2},\\\\ &\ \ 当x^2+y^2=0时,\\\\ &\ \ f_x(0, \ 0)=\lim_{\Delta x\rightarrow 0}\frac{f(0+\Delta x, \ 0)-f(0, \ 0)}{\Delta x}=\lim_{\Delta x\rightarrow 0}\frac{0}{\Delta x}=0,\\\\ &\ \ f_y(0, \ 0)=\lim_{\Delta y\rightarrow 0}\frac{f(0+\Delta y, \ 0)-f(0, \ 0)}{\Delta y}=\lim_{\Delta y\rightarrow 0}\frac{0}{\Delta y}=0,\\\\ &\ \ 所以,f_x(x, \ y)=\begin{cases}\frac{2xy^3}{(x^2+y^2)^2},x^2+y^2\neq 0,\\\\0,x^2+y^2=0.\end{cases},f_y(x, \ y)=\begin{cases}\frac{x^2(x^2-y^2)}{(x^2+y^2)^2},x^2+y^2\neq 0,\\\\0,x^2+y^2=0.\end{cases} & \end{aligned} 当x2+y2=0时, fx(x, y)=∂x∂(x2+y2x2y)=(x2+y2)22xy(x2+y2)−x2y⋅2x=(x2+y2)22xy3, fy(x, y)=∂y∂(x2+y2x2y)=(x2+y2)2x2(x2+y2)−x2y⋅2y=(x2+y2)2x2(x2−y2), 当x2+y2=0时, fx(0, 0)=Δx→0limΔxf(0+Δx, 0)−f(0, 0)=Δx→0limΔx0=0, fy(0, 0)=Δy→0limΔyf(0+Δy, 0)−f(0, 0)=Δy→0limΔy0=0, 所以,fx(x, y)=⎩ ⎨ ⎧(x2+y2)22xy3,x2+y2=0,0,x2+y2=0.,fy(x, y)=⎩ ⎨ ⎧(x2+y2)2x2(x2−y2),x2+y2=0,0,x2+y2=0.
6. 求下列函数的一阶和二阶偏导数 : \begin{aligned}&6. \ 求下列函数的一阶和二阶偏导数:&\end{aligned} 6. 求下列函数的一阶和二阶偏导数:
( 1 ) z = l n ( x + y 2 ) ; ( 2 ) z = x y . \begin{aligned} &\ \ (1)\ \ z=ln(x+y^2);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ z=x^y. & \end{aligned} (1) z=ln(x+y2); (2) z=xy.
解:
( 1 ) ∂ z ∂ x = 1 x + y 2 , ∂ 2 z ∂ x 2 = − 1 ( x + y 2 ) 2 , ∂ z ∂ y = 2 y x + y 2 , ∂ 2 z ∂ y 2 = 2 ( x + y 2 ) − 4 y 2 ( x + y 2 ) 2 = 2 ( x − y 2 ) ( x + y 2 ) 2 , ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( 1 x + y 2 ) = − 2 y ( x + y 2 ) 2 . ( 2 ) ∂ z ∂ x = y x y − 1 , ∂ 2 z ∂ x 2 = y ( y − 1 ) x y − 2 , ∂ z ∂ y = x y l n x , ∂ 2 z ∂ y 2 = x y l n 2 x , ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( y x y − 1 ) = x y − 1 + y ⋅ x y − 1 l n x . \begin{aligned} &\ \ (1)\ \frac{\partial z}{\partial x}=\frac{1}{x+y^2},\frac{\partial^2 z}{\partial x^2}=-\frac{1}{(x+y^2)^2},\frac{\partial z}{\partial y}=\frac{2y}{x+y^2},\frac{\partial^2 z}{\partial y^2}=\frac{2(x+y^2)-4y^2}{(x+y^2)^2}=\frac{2(x-y^2)}{(x+y^2)^2},\\\\ &\ \ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x\partial y}=\frac{\partial}{\partial y}\left(\frac{1}{x+y^2}\right)=-\frac{2y}{(x+y^2)^2}.\\\\ &\ \ (2)\ \frac{\partial z}{\partial x}=yx^{y-1},\frac{\partial^2 z}{\partial x^2}=y(y-1)x^{y-2},\frac{\partial z}{\partial y}=x^yln\ x,\frac{\partial^2 z}{\partial y^2}=x^yln^2\ x,\\\\ &\ \ \ \ \ \ \ \ \ \frac{\partial^2 z}{\partial x\partial y}=\frac{\partial}{\partial y}(yx^{y-1})=x^{y-1}+y\cdot x^{y-1}ln\ x. & \end{aligned} (1) ∂x∂z=x+y21,∂x2∂2z=−(x+y2)21,∂y∂z=x+y22y,∂y2∂2z=(x+y2)22(x+y2)−4y2=(x+y2)22(x−y2), ∂x∂y∂2z=∂y∂(x+y21)=−(x+y2)22y. (2) ∂x∂z=yxy−1,∂x2∂2z=y(y−1)xy−2,∂y∂z=xyln x,∂y2∂2z=xyln2 x, ∂x∂y∂2z=∂y∂(yxy−1)=xy−1+y⋅xy−1ln x.
7. 求函数 z = x y x 2 − y 2 当 x = 2 , y = 1 , Δ x = 0.01 , Δ y = 0.03 时的全增量和全微分 . \begin{aligned}&7. \ 求函数z=\frac{xy}{x^2-y^2}当x=2,y=1,\Delta x=0.01,\Delta y=0.03时的全增量和全微分.&\end{aligned} 7. 求函数z=x2−y2xy当x=2,y=1,Δx=0.01,Δy=0.03时的全增量和全微分.
解:
Δ z = 2.01 ⋅ 1.03 2.0 1 2 − 1.0 3 2 − 2 3 = 0.03 ,因 ∂ z ∂ x = − ( y 3 + x 2 y ) ( x 2 − y 2 ) 2 , ∂ z ∂ y = x 3 + x y 2 ( x 2 − y 2 ) 2 , ∂ z ∂ x ∣ ( 2 , 1 ) = − 5 9 , ∂ z ∂ y ∣ ( 2 , 1 ) = 10 9 , 所以 d z ∣ x = 2 , Δ x = 0.01 y = 1 , Δ y = 0.03 = ∂ z ∂ x ∣ ( 2 , 1 ) ⋅ Δ x + ∂ z ∂ y ∣ ( 2 , 1 ) ⋅ Δ y = 0.03. \begin{aligned} &\ \ \Delta z=\frac{2.01\cdot 1.03}{2.01^2-1.03^2}-\frac{2}{3}=0.03,因\frac{\partial z}{\partial x}=\frac{-(y^3+x^2y)}{(x^2-y^2)^2},\frac{\partial z}{\partial y}=\frac{x^3+xy^2}{(x^2-y^2)^2},\frac{\partial z}{\partial x}\bigg|_{(2, \ 1)}=-\frac{5}{9},\frac{\partial z}{\partial y}\bigg|_{(2, \ 1)}=\frac{10}{9},\\\\ &\ \ 所以dz\bigg|_{x=2,\ \Delta x=0.01\atop y=1,\ \Delta y=0.03}=\frac{\partial z}{\partial x}\bigg|_{(2, \ 1)}\cdot \Delta x+\frac{\partial z}{\partial y}\bigg|_{(2, \ 1)}\cdot \Delta y=0.03. & \end{aligned} Δz=2.012−1.0322.01⋅1.03−32=0.03,因∂x∂z=(x2−y2)2−(y3+x2y),∂y∂z=(x2−y2)2x3+xy2,∂x∂z∣ ∣(2, 1)=−95,∂y∂z∣ ∣(2, 1)=910, 所以dz∣ ∣y=1, Δy=0.03x=2, Δx=0.01=∂x∂z∣ ∣(2, 1)⋅Δx+∂y∂z∣ ∣(2, 1)⋅Δy=0.03.
8. 设 f ( x , y ) = { x 2 y 2 ( x 2 + y 2 ) 3 2 , x 2 + y 2 ≠ 0 , 0 , x 2 + y 2 = 0. 证明 : f ( x , y ) 在点 ( 0 , 0 ) 处连续且偏导数存在,但不可微分 . \begin{aligned}&8. \ 设f(x, \ y)=\begin{cases}\frac{x^2y^2}{(x^2+y^2)^{\frac{3}{2}}},x^2+y^2 \neq 0,\\\\0,x^2+y^2=0.\end{cases}证明:f(x, \ y)在点(0, \ 0)处连续且偏导数存在,但不可微分.&\end{aligned} 8. 设f(x, y)=⎩ ⎨ ⎧(x2+y2)23x2y2,x2+y2=0,0,x2+y2=0.证明:f(x, y)在点(0, 0)处连续且偏导数存在,但不可微分.
解:
因为 0 ≤ x 2 y 2 ( x 2 + y 2 ) 3 2 ≤ ( x 2 + y 2 ) 2 ( x 2 + y 2 ) 3 2 = x 2 + y 2 , lim ( x , y ) → ( 0 , 0 ) x 2 + y 2 = 0 ,所以 lim ( x , y ) → ( 0 , 0 ) f ( x , y ) = 0 , 又因 f ( 0 , 0 ) = 0 ,所以 lim ( x , y ) → ( 0 , 0 ) f ( x , y ) = f ( 0 , 0 ) ,即 f ( x , y ) 在点 ( 0 , 0 ) 处连续, f x ( 0 , 0 ) = lim Δ x → 0 f ( 0 + Δ x , 0 ) − f ( 0 , 0 ) Δ x = lim Δ x → 0 0 Δ x = 0 , f y ( 0 , 0 ) = lim Δ y → 0 f ( 0 + Δ y , 0 ) − f ( 0 , 0 ) Δ y = lim Δ y → 0 0 Δ y = 0 , Δ z − [ f x ( 0 , 0 ) Δ x + f y ( 0 , 0 ) Δ y ] = ( Δ x ) 2 ⋅ ( Δ y ) 2 [ ( Δ x ) 2 + ( Δ y ) 2 ] 3 2 , lim Δ x → 0 Δ y = Δ x ( Δ x ) 2 ⋅ ( Δ y ) 2 [ ( Δ x ) 2 + ( Δ y ) 2 ] 3 2 ρ = lim Δ x → 0 ( Δ x ) 4 [ 2 ( Δ x ) 2 ] 2 = 1 4 ≠ 0 ,其中 ρ = ( Δ x ) 2 + ( Δ y ) 2 , 所以 f ( x , y ) 在点 ( 0 , 0 ) 处偏导数存在,但不可微分 . \begin{aligned} &\ \ 因为0 \le \frac{x^2y^2}{(x^2+y^2)^{\frac{3}{2}}} \le \frac{(x^2+y^2)^2}{(x^2+y^2)^{\frac{3}{2}}}=\sqrt{x^2+y^2},\lim_{(x, \ y)\rightarrow(0, \ 0)}\sqrt{x^2+y^2}=0,所以\lim_{(x, \ y)\rightarrow(0, \ 0)}f(x, \ y)=0,\\\\ &\ \ 又因f(0, \ 0)=0,所以\lim_{(x, \ y)\rightarrow(0, \ 0)}f(x, \ y)=f(0, \ 0),即f(x, \ y)在点(0, \ 0)处连续,\\\\ &\ \ f_x(0, \ 0)=\lim_{\Delta x \rightarrow 0}\frac{f(0+\Delta x, \ 0)-f(0, \ 0)}{\Delta x}=\lim_{\Delta x\rightarrow 0}\frac{0}{\Delta x}=0,\\\\ &\ \ f_y(0, \ 0)=\lim_{\Delta y \rightarrow 0}\frac{f(0+\Delta y, \ 0)-f(0, \ 0)}{\Delta y}=\lim_{\Delta y\rightarrow 0}\frac{0}{\Delta y}=0,\\\\ &\ \ \Delta z-[f_x(0, \ 0)\Delta x+f_y(0, \ 0)\Delta y]=\frac{(\Delta x)^2\cdot (\Delta y)^2}{[(\Delta x)^2+(\Delta y)^2]^{\frac{3}{2}}},\\\\ &\ \ \lim_{\Delta x\rightarrow 0\atop \Delta y=\Delta x}\frac{\frac{(\Delta x)^2\cdot (\Delta y)^2}{[(\Delta x)^2+(\Delta y)^2]^{\frac{3}{2}}}}{\rho}=\lim_{\Delta x\rightarrow 0}\frac{(\Delta x)^4}{[2(\Delta x)^2]^2}=\frac{1}{4}\neq 0,其中\rho=\sqrt{(\Delta x)^2+(\Delta y)^2},\\\\ &\ \ 所以f(x, \ y)在点(0, \ 0)处偏导数存在,但不可微分. & \end{aligned} 因为0≤(x2+y2)23x2y2≤(x2+y2)23(x2+y2)2=x2+y2,(x, y)→(0, 0)limx2+y2=0,所以(x, y)→(0, 0)limf(x, y)=0, 又因f(0, 0)=0,所以(x, y)→(0, 0)limf(x, y)=f(0, 0),即f(x, y)在点(0, 0)处连续, fx(0, 0)=Δx→0limΔxf(0+Δx, 0)−f(0, 0)=Δx→0limΔx0=0, fy(0, 0)=Δy→0limΔyf(0+Δy, 0)−f(0, 0)=Δy→0limΔy0=0, Δz−[fx(0, 0)Δx+fy(0, 0)Δy]=[(Δx)2+(Δy)2]23(Δx)2⋅(Δy)2, Δy=ΔxΔx→0limρ[(Δx)2+(Δy)2]23(Δx)2⋅(Δy)2=Δx→0lim[2(Δx)2]2(Δx)4=41=0,其中ρ=(Δx)2+(Δy)2, 所以f(x, y)在点(0, 0)处偏导数存在,但不可微分.
9. 设 u = x y ,而 x = φ ( t ) , y = ψ ( t ) 都是可微函数,求 d u d t . \begin{aligned}&9. \ 设u=x^y,而x=\varphi(t),y=\psi(t)都是可微函数,求\frac{du}{dt}.&\end{aligned} 9. 设u=xy,而x=φ(t),y=ψ(t)都是可微函数,求dtdu.
解:
d u d t = ∂ u ∂ x d x d t + ∂ u ∂ y d y d t = y x y − 1 ⋅ φ ′ ( t ) + x y l n x ⋅ ψ ′ ( t ) . \begin{aligned} &\ \ \frac{du}{dt}=\frac{\partial u}{\partial x}\frac{dx}{dt}+\frac{\partial u}{\partial y}\frac{dy}{dt}=yx^{y-1}\cdot \varphi'(t)+x^yln\ x\cdot \psi'(t). & \end{aligned} dtdu=∂x∂udtdx+∂y∂udtdy=yxy−1⋅φ′(t)+xyln x⋅ψ′(t).
10. 设 z = f ( u , v , w ) 具有连续偏导数,而 u = η − ζ , v = ζ − ξ , w = ξ − η ,求 ∂ z ∂ ξ , ∂ z ∂ η , ∂ z ∂ ζ . \begin{aligned}&10. \ 设z=f(u, \ v, \ w)具有连续偏导数,而u=\eta-\zeta,v=\zeta-\xi,w=\xi-\eta,求\frac{\partial z}{\partial \xi},\frac{\partial z}{\partial \eta},\frac{\partial z}{\partial \zeta}.&\end{aligned} 10. 设z=f(u, v, w)具有连续偏导数,而u=η−ζ,v=ζ−ξ,w=ξ−η,求∂ξ∂z,∂η∂z,∂ζ∂z.
解:
∂ z ∂ ξ = ∂ z ∂ u ⋅ ∂ u ∂ ξ + ∂ z ∂ v ⋅ ∂ v ∂ ξ + ∂ z ∂ w ⋅ ∂ w ∂ ξ = − ∂ z ∂ v + ∂ z ∂ w , ∂ z ∂ η = ∂ z ∂ u ⋅ ∂ u ∂ η + ∂ z ∂ v ⋅ ∂ v ∂ η + ∂ z ∂ w ⋅ ∂ w ∂ η = ∂ z ∂ u − ∂ z ∂ w , ∂ z ∂ ζ = ∂ z ∂ u ⋅ ∂ u ∂ ζ + ∂ z ∂ v ⋅ ∂ v ∂ ζ + ∂ z ∂ w ⋅ ∂ w ∂ ζ = − ∂ z ∂ u + ∂ z ∂ v . \begin{aligned} &\ \ \frac{\partial z}{\partial \xi}=\frac{\partial z}{\partial u}\cdot \frac{\partial u}{\partial \xi}+\frac{\partial z}{\partial v}\cdot \frac{\partial v}{\partial \xi}+\frac{\partial z}{\partial w}\cdot \frac{\partial w}{\partial \xi}=-\frac{\partial z}{\partial v}+\frac{\partial z}{\partial w},\\\\ &\ \ \frac{\partial z}{\partial \eta}=\frac{\partial z}{\partial u}\cdot \frac{\partial u}{\partial \eta}+\frac{\partial z}{\partial v}\cdot \frac{\partial v}{\partial \eta}+\frac{\partial z}{\partial w}\cdot \frac{\partial w}{\partial \eta}=\frac{\partial z}{\partial u}-\frac{\partial z}{\partial w},\\\\ &\ \ \frac{\partial z}{\partial \zeta}=\frac{\partial z}{\partial u}\cdot \frac{\partial u}{\partial \zeta}+\frac{\partial z}{\partial v}\cdot \frac{\partial v}{\partial \zeta}+\frac{\partial z}{\partial w}\cdot \frac{\partial w}{\partial \zeta}=-\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}. & \end{aligned} ∂ξ∂z=∂u∂z⋅∂ξ∂u+∂v∂z⋅∂ξ∂v+∂w∂z⋅∂ξ∂w=−∂v∂z+∂w∂z, ∂η∂z=∂u∂z⋅∂η∂u+∂v∂z⋅∂η∂v+∂w∂z⋅∂η∂w=∂u∂z−∂w∂z, ∂ζ∂z=∂u∂z⋅∂ζ∂u+∂v∂z⋅∂ζ∂v+∂w∂z⋅∂ζ∂w=−∂u∂z+∂v∂z.