高等数学(第七版)同济大学 习题10-1 个人解答

高等数学(第七版)同济大学 习题10-1

 

1.  设有一平面薄板(不计其厚度)占有 x O y 面上的闭区域 D ,薄板上分布有面密度为 μ = μ ( x ,   y ) 的电荷,     且 μ ( x ,   y ) 在 D 上连续,试用二重积分表达该薄板上的全部电荷 Q . \begin{aligned}&1. \ 设有一平面薄板(不计其厚度)占有xOy面上的闭区域D,薄板上分布有面密度为\mu=\mu(x, \ y)的电荷,\\\\&\ \ \ \ 且\mu(x, \ y)在D上连续,试用二重积分表达该薄板上的全部电荷Q.&\end{aligned} 1. 设有一平面薄板(不计其厚度)占有xOy面上的闭区域D,薄板上分布有面密度为μ=μ(x, y)的电荷,    μ(x, y)D上连续,试用二重积分表达该薄板上的全部电荷Q.
解:

  用一组曲线网将 D 分成 n 个小闭区域 Δ σ i ,其面积记为 Δ σ i ( i = 1 , 2 , ⋅ ⋅ ⋅ , n ) ,任取一点 ( ξ i ,   η i ) ∈ Δ σ i ,   则 Δ σ i 上分布的电荷 Δ Q i ≈ μ ( ξ i ,   η i ) Δ σ i ,通过求和取极限,得到该薄板上的全部电荷为    Q = lim ⁡ λ → 0 ∑ i = 1 n μ ( ξ i ,   η i ) Δ σ i = ∬ D μ ( x ,   y ) d σ ,其中 λ = m a x 1 ≤ i ≤ n { Δ σ i 的直径 } \begin{aligned} &\ \ 用一组曲线网将D分成n个小闭区域\Delta \sigma_i,其面积记为\Delta \sigma_i(i=1,2,\cdot\cdot\cdot,n),任取一点(\xi_i, \ \eta_i) \in \Delta \sigma_i,\\\\ &\ \ 则\Delta \sigma_i上分布的电荷\Delta Q_i \approx \mu(\xi_i, \ \eta_i)\Delta \sigma_i,通过求和取极限,得到该薄板上的全部电荷为\\\\ &\ \ Q=\lim_{\lambda \rightarrow 0}\sum_{i=1}^{n}\mu(\xi_i, \ \eta_i)\Delta \sigma_i=\iint_D \mu(x, \ y)d\sigma,其中\lambda=max_{1\le i \le n}\{\Delta \sigma_i的直径\} & \end{aligned}   用一组曲线网将D分成n个小闭区域Δσi,其面积记为Δσi(i=12n),任取一点(ξi, ηi)Δσi  Δσi上分布的电荷ΔQiμ(ξi, ηi)Δσi,通过求和取极限,得到该薄板上的全部电荷为  Q=λ0limi=1nμ(ξi, ηi)Δσi=Dμ(x, y)dσ,其中λ=max1in{Δσi的直径}


2.  设 I 1 = ∬ D 1 ( x 2 + y 2 ) 3 d σ ,其中 D 1 = { ( x ,   y )   ∣   − 1 ≤ x ≤ 1 , − 2 ≤ y ≤ 2 } ;又 I 2 = ∬ D 2 ( x 2 + y 2 ) 3 d σ ,     其中 D 2 = { ( x ,   y )   ∣   0 ≤ x ≤ 1 , 0 ≤ y ≤ 2 } ,试利用二重积分的几何意义说明 I 1 与 I 2 之间的关系 . \begin{aligned}&2. \ 设I_1=\iint_{D_1}(x^2+y^2)^3d\sigma,其中D_1=\{(x, \ y)\ |\ -1 \le x \le 1,-2 \le y \le 2\};又I_2=\iint_{D_2}(x^2+y^2)^3d\sigma,\\\\&\ \ \ \ 其中D_2=\{(x, \ y)\ |\ 0 \le x \le 1,0 \le y \le 2\},试利用二重积分的几何意义说明I_1与I_2之间的关系.&\end{aligned} 2. I1=D1(x2+y2)3dσ,其中D1={(x, y)  1x12y2};又I2=D2(x2+y2)3dσ    其中D2={(x, y)  0x10y2},试利用二重积分的几何意义说明I1I2之间的关系.
解:

  根据二重积分的几何意义可知, I 1 表示底为 D 1 ,顶为曲面 z = ( x 2 + y 2 ) 3 的曲顶柱体 Ω 1 的体积;    I 2 表示底为 D 2 ,顶为曲面 z = ( x 2 + y 2 ) 3 的曲顶柱体 Ω 2 的体积,由于位于 D 1 上方的曲面 z = ( x 2 + y 2 ) 3 关于 y O z 面   和 z O x 面均对称,所以 y O z 面和 z O x 面将 Ω 1 分成四个等积的部分,其中位于第一卦限的部分为 Ω 2 ,由此得 I 1 = 4 I 2 . \begin{aligned} &\ \ 根据二重积分的几何意义可知,I_1表示底为D_1,顶为曲面z=(x^2+y^2)^3的曲顶柱体\Omega_1的体积;\\\\ &\ \ I_2表示底为D_2,顶为曲面z=(x^2+y^2)^3的曲顶柱体\Omega_2的体积,由于位于D_1上方的曲面z=(x^2+y^2)^3关于yOz面\\\\ &\ \ 和zOx面均对称,所以yOz面和zOx面将\Omega_1分成四个等积的部分,其中位于第一卦限的部分为\Omega_2,由此得I_1=4I_2. & \end{aligned}   根据二重积分的几何意义可知,I1表示底为D1,顶为曲面z=(x2+y2)3的曲顶柱体Ω1的体积;  I2表示底为D2,顶为曲面z=(x2+y2)3的曲顶柱体Ω2的体积,由于位于D1上方的曲面z=(x2+y2)3关于yOz  zOx面均对称,所以yOz面和zOx面将Ω1分成四个等积的部分,其中位于第一卦限的部分为Ω2,由此得I1=4I2.


3.  利用二重积分定义证明: \begin{aligned}&3. \ 利用二重积分定义证明:&\end{aligned} 3. 利用二重积分定义证明:

   ( 1 )    ∬ D d σ = σ ( 其中 σ 为 D 的面积 ) ;    ( 2 )    ∬ D k f ( x ,   y ) d σ = k ∬ D f ( x ,   y ) d σ ( 其中 k 为常数 ) ;    ( 3 )    ∬ D f ( x ,   y ) d σ = ∬ D 1 f ( x ,   y ) d σ + ∬ D 2 f ( x ,   y ) d σ ,   其中 D = D 1 ∪ D 2 , D 1 、 D 2 为两个无公共内点的闭区域 . \begin{aligned} &\ \ (1)\ \ \iint_D d\sigma=\sigma(其中\sigma为D的面积);\\\\ &\ \ (2)\ \ \iint_D kf(x, \ y)d\sigma=k\iint_D f(x, \ y)d\sigma(其中k为常数);\\\\ &\ \ (3)\ \ \iint_D f(x, \ y)d\sigma=\iint_{D_1} f(x, \ y)d\sigma+\iint_{D_2} f(x, \ y)d\sigma,\\\\ &\ \ 其中D=D_1 \cup D_2,D_1、D_2为两个无公共内点的闭区域. & \end{aligned}   (1)  Ddσ=σ(其中σD的面积)  (2)  Dkf(x, y)dσ=kDf(x, y)dσ(其中k为常数)  (3)  Df(x, y)dσ=D1f(x, y)dσ+D2f(x, y)dσ  其中D=D1D2D1D2为两个无公共内点的闭区域.

解:

   ( 1 )  因为被积函数 f ( x ,   y ) ≡ 1 ,由二重积分定义得 ∬ D d σ = lim ⁡ A → 0 ∑ i = 1 n f ( ξ i ,   η i ) Δ σ i = lim ⁡ λ → 0 ∑ i = 1 n Δ σ i = lim ⁡ λ → 0 σ = σ .    ( 2 )   ∬ D k f ( x ,   y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n k f ( ξ i ,   η i ) Δ σ i = k lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ,   η i ) Δ σ i = k ∬ D f ( x ,   y ) d σ .    ( 3 )  因为函数 f ( x ,   y ) 在闭区域 D 上可积,所以不论如何分割 D ,积分和的极限不变,在分割 D 时,可以使 D 1 和 D 2 的         公共边界是一条分割线,因此 f ( x ,   y ) 在 D 1 ∪ D 2 上的积分和就等于 D 1 上的积分和加 D 2 上的积分和,记为          ∑ D 1 ∪ D 2 f ( ξ i ,   η i ) Δ σ i = ∑ D 1 f ( ξ i ,   η i ) Δ σ i + ∑ D 2 f ( ξ i ,   η i ) Δ σ i ,令所有 Δ σ i 的直径的最大值 λ → 0 ,上式两端取极限,         得 ∬ D 1 ∪ D 2 f ( x ,   y ) d σ = ∬ D 1 f ( x ,   y ) d σ + ∬ D 2 f ( x ,   y ) d σ . \begin{aligned} &\ \ (1)\ 因为被积函数f(x, \ y)\equiv 1,由二重积分定义得\iint_D d\sigma=\lim_{A \rightarrow 0}\sum_{i=1}^{n}f(\xi_i, \ \eta_i)\Delta \sigma_i=\lim_{\lambda \rightarrow 0}\sum_{i=1}^{n}\Delta \sigma_i=\lim_{\lambda \rightarrow 0}\sigma=\sigma.\\\\ &\ \ (2)\ \iint_D kf(x, \ y)d\sigma=\lim_{\lambda \rightarrow 0}\sum_{i=1}^{n} kf(\xi_i, \ \eta_i)\Delta \sigma_i=k\lim_{\lambda \rightarrow 0}\sum_{i=1}^{n} f(\xi_i, \ \eta_i)\Delta \sigma_i=k\iint_D f(x, \ y)d\sigma.\\\\ &\ \ (3)\ 因为函数f(x, \ y)在闭区域D上可积,所以不论如何分割D,积分和的极限不变,在分割D时,可以使D_1和D_2的\\\\ &\ \ \ \ \ \ \ \ 公共边界是一条分割线,因此f(x, \ y)在D_1 \cup D_2上的积分和就等于D_1上的积分和加D_2上的积分和,记为\\\\ &\ \ \ \ \ \ \ \ \sum_{D_1 \cup D_2}f(\xi_i, \ \eta_i)\Delta \sigma_i=\sum_{D_1}f(\xi_i, \ \eta_i)\Delta \sigma_i+\sum_{D_2}f(\xi_i, \ \eta_i)\Delta \sigma_i,令所有\Delta \sigma_i的直径的最大值\lambda \rightarrow 0,上式两端取极限,\\\\ &\ \ \ \ \ \ \ \ 得\iint_{D_1 \cup D_2} f(x, \ y)d\sigma=\iint_{D_1} f(x, \ y)d\sigma+\iint_{D_2} f(x, \ y)d\sigma. & \end{aligned}   (1) 因为被积函数f(x, y)1,由二重积分定义得Ddσ=A0limi=1nf(ξi, ηi)Δσi=λ0limi=1nΔσi=λ0limσ=σ.  (2) Dkf(x, y)dσ=λ0limi=1nkf(ξi, ηi)Δσi=kλ0limi=1nf(ξi, ηi)Δσi=kDf(x, y)dσ.  (3) 因为函数f(x, y)在闭区域D上可积,所以不论如何分割D,积分和的极限不变,在分割D时,可以使D1D2        公共边界是一条分割线,因此f(x, y)D1D2上的积分和就等于D1上的积分和加D2上的积分和,记为        D1D2f(ξi, ηi)Δσi=D1f(ξi, ηi)Δσi+D2f(ξi, ηi)Δσi,令所有Δσi的直径的最大值λ0,上式两端取极限,        D1D2f(x, y)dσ=D1f(x, y)dσ+D2f(x, y)dσ.


4.  试确定积分区域 D ,使二重积分 ∬ D ( 1 − 2 x 2 − y 2 ) d x d y 达到最大值 . \begin{aligned}&4. \ 试确定积分区域D,使二重积分\iint_D (1-2x^2-y^2)dxdy达到最大值.&\end{aligned} 4. 试确定积分区域D,使二重积分D(12x2y2)dxdy达到最大值.
解:

  根据二重积分性质可知,当积分区域 D 包含了所有使被积函数 1 − 2 x 2 − y 2 大于等于零的点,而不包含使   被积函数 1 − 2 x 2 − y 2 小于零的点,即当 D 是椭圆 2 x 2 + y 2 = 1 所围成的平面闭区域时,二重积分的值最大 . \begin{aligned} &\ \ 根据二重积分性质可知,当积分区域D包含了所有使被积函数1-2x^2-y^2大于等于零的点,而不包含使\\\\ &\ \ 被积函数1-2x^2-y^2小于零的点,即当D是椭圆2x^2+y^2=1所围成的平面闭区域时,二重积分的值最大. & \end{aligned}   根据二重积分性质可知,当积分区域D包含了所有使被积函数12x2y2大于等于零的点,而不包含使  被积函数12x2y2小于零的点,即当D是椭圆2x2+y2=1所围成的平面闭区域时,二重积分的值最大.


5.  根据二重积分的性质,比较下列积分的大小: \begin{aligned}&5. \ 根据二重积分的性质,比较下列积分的大小:&\end{aligned} 5. 根据二重积分的性质,比较下列积分的大小:

   ( 1 )    ∬ D ( x + y ) 2 d σ 与 ∬ D ( x + y ) 3 d σ ,其中积分区域 D 是由 x 轴、 y 轴与直线 x + y = 1 所围成;    ( 2 )    ∬ D ( x + y ) 2 d σ 与 ∬ D ( x + y ) 3 d σ ,其中积分区域 D 是由圆周 ( x − 2 ) 2 + ( y − 1 ) 2 = 2 所围成;    ( 3 )    ∬ D l n ( x + y ) d σ 与 ∬ D [ l n ( x + y ) ] 2 d σ ,其中 D 是三角形闭区域,三顶点分别为 ( 1 ,   0 ) , ( 1 ,   1 ) , ( 2 ,   0 ) ;    ( 4 )    ∬ D l n ( x + y ) d σ 与 ∬ D [ l n ( x + y ) ] 2 d σ ,其中 D = { ( x ,   y )   ∣   3 ≤ x ≤ 5 , 0 ≤ y ≤ 1 } . \begin{aligned} &\ \ (1)\ \ \iint_D (x+y)^2 d\sigma与\iint_D (x+y)^3 d\sigma,其中积分区域D是由x轴、y轴与直线x+y=1所围成;\\\\ &\ \ (2)\ \ \iint_D (x+y)^2 d\sigma与\iint_D (x+y)^3 d\sigma,其中积分区域D是由圆周(x-2)^2+(y-1)^2=2所围成;\\\\ &\ \ (3)\ \ \iint_D ln(x+y) d\sigma与\iint_D [ln(x+y)]^2 d\sigma,其中D是三角形闭区域,三顶点分别为(1, \ 0),(1, \ 1),(2, \ 0);\\\\ &\ \ (4)\ \ \iint_D ln(x+y) d\sigma与\iint_D [ln(x+y)]^2 d\sigma,其中D=\{(x, \ y)\ |\ 3 \le x \le 5,0 \le y \le 1\}. & \end{aligned}   (1)  D(x+y)2dσD(x+y)3dσ,其中积分区域D是由x轴、y轴与直线x+y=1所围成;  (2)  D(x+y)2dσD(x+y)3dσ,其中积分区域D是由圆周(x2)2+(y1)2=2所围成;  (3)  Dln(x+y)dσD[ln(x+y)]2dσ,其中D是三角形闭区域,三顶点分别为(1, 0)(1, 1)(2, 0)  (4)  Dln(x+y)dσD[ln(x+y)]2dσ,其中D={(x, y)  3x50y1}.

解:

   ( 1 )  在积分区域 D 上, 0 ≤ x + y ≤ 1 ,则有 ( x + y ) 3 ≤ ( x + y ) 2 ,根据二重积分的性质 4 ,         得 ∬ D ( x + y ) 2 d σ ≥ ∬ D ( x + y ) 3 d σ    ( 2 )  因为积分区域 D 位于半平面 { ( x ,   y )   ∣   x + y ≥ 1 } 内,所以在 D 上有 ( x + y ) 2 ≤ ( x + y ) 3 ,         则 ∬ D ( x + y ) 2 d σ ≤ ∬ D ( x + y ) 3 d σ    ( 3 )  因为积分区域 D 位于条形区域 { ( x ,   y )   ∣   1 ≤ x + y ≤ 2 } 内,所以区域 D 上的点满足 0 ≤ l n ( x + y ) ≤ 1 ,         有 [ l n ( x + y ) ] 2 ≤ l n ( x + y ) ,因此, ∬ D l n ( x + y ) d σ ≥ ∬ D [ l n ( x + y ) ] 2 d σ    ( 4 )  因为积分区域 D 位于半平面 { ( x ,   y )   ∣   x + y ≥ e } 内,所以在 D 上有 l n ( x + y ) ≥ 1 ,         则 [ l n ( x + y ) ] 2 ≥ l n ( x + y ) ,因此, ∬ D l n ( x + y ) d σ ≤ ∬ D [ l n ( x + y ) ] 2 d σ \begin{aligned} &\ \ (1)\ 在积分区域D上,0 \le x+y \le 1,则有(x+y)^3 \le (x+y)^2,根据二重积分的性质4,\\\\ &\ \ \ \ \ \ \ \ 得\iint_D (x+y)^2 d\sigma \ge \iint_D (x+y)^3 d\sigma\\\\ &\ \ (2)\ 因为积分区域D位于半平面\{(x, \ y)\ |\ x+y \ge 1\}内,所以在D上有(x+y)^2 \le (x+y)^3,\\\\ &\ \ \ \ \ \ \ \ 则\iint_D (x+y)^2 d\sigma \le \iint_D (x+y)^3 d\sigma\\\\ &\ \ (3)\ 因为积分区域D位于条形区域\{(x, \ y)\ |\ 1 \le x+y \le 2\}内,所以区域D上的点满足0 \le ln(x+y) \le 1,\\\\ &\ \ \ \ \ \ \ \ 有[ln(x+y)]^2 \le ln(x+y),因此,\iint_D ln(x+y) d\sigma \ge \iint_D [ln(x+y)]^2 d\sigma\\\\ &\ \ (4)\ 因为积分区域D位于半平面\{(x, \ y)\ |\ x+y \ge e\}内,所以在D上有ln(x+y) \ge 1,\\\\ &\ \ \ \ \ \ \ \ 则[ln(x+y)]^2 \ge ln(x+y),因此,\iint_D ln(x+y) d\sigma \le \iint_D [ln(x+y)]^2 d\sigma & \end{aligned}   (1) 在积分区域D上,0x+y1,则有(x+y)3(x+y)2,根据二重积分的性质4        D(x+y)2dσD(x+y)3dσ  (2) 因为积分区域D位于半平面{(x, y)  x+y1}内,所以在D上有(x+y)2(x+y)3        D(x+y)2dσD(x+y)3dσ  (3) 因为积分区域D位于条形区域{(x, y)  1x+y2}内,所以区域D上的点满足0ln(x+y)1        [ln(x+y)]2ln(x+y),因此,Dln(x+y)dσD[ln(x+y)]2dσ  (4) 因为积分区域D位于半平面{(x, y)  x+ye}内,所以在D上有ln(x+y)1        [ln(x+y)]2ln(x+y),因此,Dln(x+y)dσD[ln(x+y)]2dσ


6.  利用二重积分的性质估计下列积分的值: \begin{aligned}&6. \ 利用二重积分的性质估计下列积分的值:&\end{aligned} 6. 利用二重积分的性质估计下列积分的值:

   ( 1 )    I = ∬ D x y ( x + y ) d σ ,其中 D = { ( x ,   y )   ∣   0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 } ;    ( 2 )    I = ∬ D s i n 2 x s i n 2 y d σ ,其中 D = { ( x ,   y )   ∣   0 ≤ x ≤ π , 0 ≤ y ≤ π } ;    ( 3 )    I = ∬ D ( x + y + 1 ) d σ ,其中 D = { ( x ,   y )   ∣   0 ≤ x ≤ 1 , 0 ≤ y ≤ 2 } ;    ( 4 )    I = ∬ D ( x 2 + 4 y 2 + 9 ) d σ ,其中 D = { ( x ,   y )   ∣   x 2 + y 2 ≤ 4 } . \begin{aligned} &\ \ (1)\ \ I=\iint_D xy(x+y) d\sigma,其中D=\{(x, \ y)\ |\ 0 \le x \le 1,0 \le y \le 1\};\\\\ &\ \ (2)\ \ I=\iint_D sin^2xsin^2y d\sigma,其中D=\{(x, \ y)\ |\ 0 \le x \le \pi,0 \le y \le \pi\};\\\\ &\ \ (3)\ \ I=\iint_D (x+y+1) d\sigma,其中D=\{(x, \ y)\ |\ 0 \le x \le 1,0 \le y \le 2\};\\\\ &\ \ (4)\ \ I=\iint_D (x^2+4y^2+9) d\sigma,其中D=\{(x, \ y)\ |\ x^2+y^2 \le 4\}. & \end{aligned}   (1)  I=Dxy(x+y)dσ,其中D={(x, y)  0x10y1}  (2)  I=Dsin2xsin2ydσ,其中D={(x, y)  0xπ0yπ}  (3)  I=D(x+y+1)dσ,其中D={(x, y)  0x10y2}  (4)  I=D(x2+4y2+9)dσ,其中D={(x, y)  x2+y24}.

解:

   ( 1 )  在积分区域 D 上, 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 ,则 0 ≤ x y ( x + y ) ≤ 2 ,又因 D 的面积等于 1 ,         因此, 0 ≤ ∬ D x y ( x + y ) d σ ≤ 2.    ( 2 )  在积分区域 D 上, 0 ≤ s i n   x ≤ 1 , 0 ≤ s i n   y ≤ 1 ,则 0 ≤ s i n 2 x s i n 2 y ≤ 1 ,又因 D 的面积等于 π 2 ,         因此, 0 ≤ ∬ D s i n 2 x s i n 2 y d σ ≤ π 2 .    ( 3 )  在积分区域 D 上有 1 ≤ x + y + 1 ≤ 4 ,又因 D 的面积等于 2 ,因此, 2 ≤ ∬ D ( x + y + 1 ) d σ ≤ 8.    ( 4 )  在积分区域 D 上有 0 ≤ x 2 + y 2 ≤ 4 ,则有 9 ≤ x 2 + 4 y 2 + 9 ≤ 4 ( x 2 + y 2 ) + 9 ≤ 25 ,又因 D 的面积等于 4 π ,         因此, 36 π ≤ ∬ D ( x 2 + 4 y 2 + 9 ) d σ ≤ 100 π . \begin{aligned} &\ \ (1)\ 在积分区域D上,0 \le x \le 1,0 \le y \le 1,则0 \le xy(x+y) \le 2,又因D的面积等于1,\\\\ &\ \ \ \ \ \ \ \ 因此,0 \le \iint_D xy(x+y) d\sigma \le 2.\\\\ &\ \ (2)\ 在积分区域D上,0 \le sin\ x \le 1,0 \le sin\ y \le 1,则0 \le sin^2xsin^2y \le 1,又因D的面积等于\pi^2,\\\\ &\ \ \ \ \ \ \ \ 因此,0 \le \iint_D sin^2xsin^2y d\sigma \le \pi^2.\\\\ &\ \ (3)\ 在积分区域D上有1 \le x+y+1 \le 4,又因D的面积等于2,因此,2 \le \iint_D (x+y+1) d\sigma \le 8.\\\\ &\ \ (4)\ 在积分区域D上有0 \le x^2+y^2 \le 4,则有9 \le x^2+4y^2+9 \le 4(x^2+y^2)+9 \le 25,又因D的面积等于4\pi,\\\\ &\ \ \ \ \ \ \ \ 因此,36\pi \le \iint_D (x^2+4y^2+9) d\sigma \le 100\pi. & \end{aligned}   (1) 在积分区域D上,0x10y1,则0xy(x+y)2,又因D的面积等于1        因此,0Dxy(x+y)dσ2.  (2) 在积分区域D上,0sin x10sin y1,则0sin2xsin2y1,又因D的面积等于π2        因此,0Dsin2xsin2ydσπ2.  (3) 在积分区域D上有1x+y+14,又因D的面积等于2,因此,2D(x+y+1)dσ8.  (4) 在积分区域D上有0x2+y24,则有9x2+4y2+94(x2+y2)+925,又因D的面积等于4π        因此,36πD(x2+4y2+9)dσ100π.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值