线性代数(第六版)同济大学 习题一(7-9题)
7. 设 n 阶行列式 D = d e t ( a i j ) ,把 D 上下翻转、或逆时针旋转 9 0 ∘ 、或依副对角线翻转、依次得 D 1 = ∣ a n 1 ⋅ ⋅ ⋅ a n n ⋮ ⋮ a 11 ⋅ ⋅ ⋅ a 1 n ∣ , D 2 = ∣ a 1 n ⋅ ⋅ ⋅ a n n ⋮ ⋮ a 11 ⋅ ⋅ ⋅ a n 1 ∣ , D 3 = ∣ a n n ⋅ ⋅ ⋅ a 1 n ⋮ ⋮ a n 1 ⋅ ⋅ ⋅ a 11 ∣ 证明 D 1 = D 2 = ( − 1 ) n ( n − 1 ) 2 D , D 3 = D . \begin{aligned}&7. \ 设n阶行列式D=det(a_{ij}),把D上下翻转、或逆时针旋转90^{\circ}、或依副对角线翻转、依次得\\\\&\ \ \ \ D_1=\left|\begin{array}{cccc}a_{n1} &\cdot\cdot\cdot &a_{nn}\\\\\vdots & &\vdots\\\\a_{11} &\cdot\cdot\cdot &a_{1n}\end{array}\right|,D_2=\left|\begin{array}{cccc}a_{1n} &\cdot\cdot\cdot &a_{nn}\\\\\vdots & &\vdots\\\\a_{11} &\cdot\cdot\cdot &a_{n1}\end{array}\right|,D_3=\left|\begin{array}{cccc}a_{nn} &\cdot\cdot\cdot &a_{1n}\\\\\vdots & &\vdots\\\\a_{n1} &\cdot\cdot\cdot &a_{11}\end{array}\right|\\\\&\ \ \ \ 证明D_1=D_2=(-1)^{\frac{n(n-1)}{2}}D,D_3=D.&\end{aligned} 7. 设n阶行列式D=det(aij),把D上下翻转、或逆时针旋转90∘、或依副对角线翻转、依次得 D1= an1⋮a11⋅⋅⋅⋅⋅⋅ann⋮a1n ,D2= a1n⋮a11⋅⋅⋅⋅⋅⋅ann⋮an1 ,D3= ann⋮an1⋅⋅⋅⋅⋅⋅a1n⋮a11 证明D1=D2=(−1)2n(n−1)D,D3=D.
解:
D 1 的第 n 行依次与第 n − 1 行 ⋅ ⋅ ⋅ 第 1 行对换(共 n − 1 次对换),再把第 n 行依次与第 n − 1 行 ⋅ ⋅ ⋅ 第 2 行对换 (共 n − 2 次对换),一直经过共 ( n − 1 ) + ( n − 2 ) + ⋅ ⋅ ⋅ + 1 = n ( n − 1 ) 2 次行的对换得到 ∣ a 11 ⋅ ⋅ ⋅ a 1 n ⋮ ⋮ a n 1 ⋅ ⋅ ⋅ a n n ∣ ,因此 D 1 = ( − 1 ) n ( n − 1 ) 2 D D 2 进行行列式转置,得到 D 2 = D 2 T = ∣ a 1 n ⋅ ⋅ ⋅ a 11 ⋮ ⋮ a n n ⋅ ⋅ ⋅ a n 1 ∣ , D 2 T 的第 n 列依次与第 n − 1 列 ⋅ ⋅ ⋅ 第 1 列对换 (共 n − 1 次对换),再把第 n 列依次与第 n − 1 列 ⋅ ⋅ ⋅ 第 2 列对换(共 n − 2 次对换), 一直经过共 ( n − 1 ) + ( n − 2 ) + ⋅ ⋅ ⋅ + 1 = n ( n − 1 ) 2 次列的对换得到 ∣ a 11 ⋅ ⋅ ⋅ a 1 n ⋮ ⋮ a n 1 ⋅ ⋅ ⋅ a n n ∣ ,因此 D 2 = ( − 1 ) n ( n − 1 ) 2 D D 3 = D 3 T = ∣ a n n ⋅ ⋅ ⋅ a n 1 ⋮ ⋮ a 1 n ⋅ ⋅ ⋅ a 11 ∣ ,先对行对换,再对列对换,得 ∣ a 11 ⋅ ⋅ ⋅ a 1 n ⋮ ⋮ a n 1 ⋅ ⋅ ⋅ a n n ∣ ,因此 D 3 = D . \begin{aligned} &\ \ D_1的第n行依次与第n-1行\cdot\cdot\cdot第1行对换(共n-1次对换),再把第n行依次与第n-1行\cdot\cdot\cdot第2行对换\\\\ &\ \ (共n-2次对换),一直经过共(n-1)+(n-2)+\cdot\cdot\cdot+1=\frac{n(n-1)}{2}次行的对换得到\\\\ &\ \ \left|\begin{array}{cccc}a_{11} &\cdot\cdot\cdot &a_{1n}\\\\\vdots & &\vdots\\\\a_{n1} &\cdot\cdot\cdot &a_{nn}\end{array}\right|,因此D_1=(-1)^{\frac{n(n-1)}{2}}D\\\\ &\ \ D_2进行行列式转置,得到D_2=D_2^T=\left|\begin{array}{cccc}a_{1n} &\cdot\cdot\cdot &a_{11}\\\\\vdots & &\vdots\\\\a_{nn} &\cdot\cdot\cdot &a_{n1}\end{array}\right|,D_2^T的第n列依次与第n-1列\cdot\cdot\cdot第1列对换\\\\ &\ \ (共n-1次对换),再把第n列依次与第n-1列\cdot\cdot\cdot第2列对换(共n-2次对换),\\\\ &\ \ 一直经过共(n-1)+(n-2)+\cdot\cdot\cdot+1=\frac{n(n-1)}{2}次列的对换得到\\\\ &\ \ \left|\begin{array}{cccc}a_{11} &\cdot\cdot\cdot &a_{1n}\\\\\vdots & &\vdots\\\\a_{n1} &\cdot\cdot\cdot &a_{nn}\end{array}\right|,因此D_2=(-1)^{\frac{n(n-1)}{2}}D\\\\ &\ \ D_3=D_3^T=\left|\begin{array}{cccc}a_{nn} &\cdot\cdot\cdot &a_{n1}\\\\\vdots & &\vdots\\\\a_{1n} &\cdot\cdot\cdot &a_{11}\end{array}\right|,先对行对换,再对列对换,得\left|\begin{array}{cccc}a_{11} &\cdot\cdot\cdot &a_{1n}\\\\\vdots & &\vdots\\\\a_{n1} &\cdot\cdot\cdot &a_{nn}\end{array}\right|,因此D_3=D. & \end{aligned} D1的第n行依次与第n−1行⋅⋅⋅第1行对换(共n−1次对换),再把第n行依次与第n−1行⋅⋅⋅第2行对换 (共n−2次对换),一直经过共(n−1)+(n−2)+⋅⋅⋅+1=2n(n−1)次行的对换得到 a11⋮an1⋅⋅⋅⋅⋅⋅a1n⋮ann ,因此D1=(−1)2n(n−1)D D2进行行列式转置,得到D2=D2T= a1n⋮ann⋅⋅⋅⋅⋅⋅a11⋮an1 ,D2T的第n列依次与第n−1列⋅⋅⋅第1列对换 (共n−1次对换),再把第n列依次与第n−1列⋅⋅⋅第2列对换(共n−2次对换), 一直经过共(n−1)+(n−2)+⋅⋅⋅+1=2n(n−1)次列的对换得到 a11⋮an1⋅⋅⋅⋅⋅⋅a1n⋮ann ,因此D2=(−1)2n(n−1)D D3=D3T= ann⋮a1n⋅⋅⋅⋅⋅⋅an1⋮a11 ,先对行对换,再对列对换,得 a11⋮an1⋅⋅⋅⋅⋅⋅a1n⋮ann ,因此D3=D.
8. 计算下列各行列式( D k 为 k 阶行列式): \begin{aligned}&8. \ 计算下列各行列式(D_k为k阶行列式):&\end{aligned} 8. 计算下列各行列式(Dk为k阶行列式):
( 1 ) D n = ∣ a 1 ⋱ 1 a ∣ ,其中对角线上元素都是 a ,未写出的元素都是 0 ; ( 2 ) D n = ∣ x a ⋅ ⋅ ⋅ a a x ⋅ ⋅ ⋅ a ⋮ ⋮ a a ⋅ ⋅ ⋅ x ∣ ; ( 3 ) D n + 1 = ∣ a n ( a − 1 ) n ⋅ ⋅ ⋅ ( a − n ) n a n − 1 ( a − 1 ) n − 1 ⋅ ⋅ ⋅ ( a − n ) n − 1 ⋮ ⋮ ⋮ a a − 1 ⋯ a − n 1 1 ⋯ 1 ∣ ,提示:利用范德蒙德行列式的结果; ( 4 ) D 2 n = ∣ a n b n ⋱ ⋱ a 1 b 1 c 1 d 1 ⋱ ⋱ c n d n ∣ ,其中未写出的元素都是 0 ; ( 5 ) D n = ∣ 1 + a 1 a 1 ⋯ a 1 a 2 1 + a 2 ⋯ a 2 ⋮ ⋮ ⋮ a n a n ⋯ 1 + a n ∣ ; ( 6 ) D n = d e t ( a i j ) ,其中 a i j = ∣ i − j ∣ ; ( 7 ) D n = ∣ 1 + a 1 1 ⋯ 1 1 1 + a 2 ⋯ 1 ⋮ ⋮ ⋮ 1 1 ⋯ 1 + a n ∣ ,其中 a 1 a 2 ⋯ a n ≠ 0. \begin{aligned} &\ \ (1)\ \ D_n=\left|\begin{array}{cccc}a & &1\\\\&\ddots\\\\1 & &a\end{array}\right|,其中对角线上元素都是a,未写出的元素都是0;\\\\ &\ \ (2)\ \ D_n=\left|\begin{array}{cccc}x &a &\cdot\cdot\cdot &a\\\\a &x &\cdot\cdot\cdot &a\\\\\vdots & & &\vdots\\\\a &a &\cdot\cdot\cdot &x\end{array}\right|;\\\\ &\ \ (3)\ \ D_{n+1}=\left|\begin{array}{cccc}a^n &(a-1)^n &\cdot\cdot\cdot &(a-n)^n\\\\a^{n-1} &(a-1)^{n-1} &\cdot\cdot\cdot &(a-n)^{n-1}\\\\\vdots &\vdots & &\vdots\\\\a &a-1 &\cdots &a-n\\\\1 &1 &\cdots &1\end{array}\right|,提示:利用范德蒙德行列式的结果;\\\\ &\ \ (4)\ \ D_{2n}=\left|\begin{array}{cccc}a_n & & & & &b_n\\\\ &\ddots & & &\ddots &\\\\ & &a_1 &b_1& &\\\\ & &c_1 &d_1& &\\\\ &\ddots & & &\ddots &\\\\c_n & & & & &d_n\end{array}\right|,其中未写出的元素都是0;\\\\ &\ \ (5)\ \ D_n=\left|\begin{array}{cccc}1+a_1 &a_1 &\cdots &a_1\\\\a_2 &1+a_2 &\cdots &a_2\\\\\vdots &\vdots & &\vdots\\\\a_n &a_n &\cdots &1+a_n\end{array}\right|;\\\ &\ \ (6)\ \ D_n=det(a_{ij}),其中a_{ij}=|i-j|;\\\\ &\ \ (7)\ \ D_n=\left|\begin{array}{cccc}1+a_1 &1 &\cdots &1\\\\1 &1+a_2 &\cdots &1\\\\\vdots &\vdots & &\vdots\\\\1 &1 &\cdots &1+a_n\end{array}\right|,其中a_1a_2\cdots a_n\neq 0. & \end{aligned} (1) Dn= a1⋱1a ,其中对角线上元素都是a,未写出的元素都是0; (2) Dn= xa⋮aaxa⋅⋅⋅⋅⋅⋅⋅⋅⋅aa⋮x ; (3) Dn+1= anan−1⋮a1(a−1)n(a−1)n−1⋮a−11⋅⋅⋅⋅⋅⋅⋯⋯(a−n)n(a−n)n−1⋮a−n1 ,提示:利用范德蒙德行列式的结果; (4) D2n= ancn⋱⋱a1c1b1d1⋱⋱bndn ,其中未写出的元素都是0; (5) Dn= 1+a1a2⋮ana11+a2⋮an⋯⋯⋯a1a2⋮1+an ; (6) Dn=det(aij),其中aij=∣i−j∣; (7) Dn= 1+a11⋮111+a2⋮1⋯⋯⋯11⋮1+an ,其中a1a2⋯an=0.
解:
( 1 ) D n = ∣ a 1 ⋱ 1 a ∣ = r 1 − r n ∣ a − 1 − ( a − 1 ) ⋱ 1 a ∣ = c n + c 1 ∣ a − 1 0 ⋱ 1 a + 1 ∣ = ( a 2 − 1 ) a n − 2 . ( 2 ) D n = ∣ x a ⋅ ⋅ ⋅ a a x ⋅ ⋅ ⋅ a ⋮ ⋮ a a ⋅ ⋅ ⋅ x ∣ = r n − r n − 1 , r n − 1 − r n − 2 ⋯ r 2 − r 1 ∣ x a ⋅ ⋅ ⋅ a a − ( x − a ) x − a ⋅ ⋅ ⋅ 0 0 0 − ( x − a ) ⋅ ⋅ ⋅ 0 0 ⋮ ⋮ ⋮ 0 0 ⋅ ⋅ ⋅ − ( x − a ) x − a ∣ = c n − 1 + c n , c n − 2 + r n − 1 ⋯ c 1 + c 2 ∣ x + ( n − 1 ) a ( n − 1 ) a ⋅ ⋅ ⋅ 2 a a 0 x − a ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋮ ⋮ ⋮ 0 0 ⋅ ⋅ ⋅ 0 x − a ∣ = [ x + ( n − 1 ) a ] ( x − a ) n − 1 ( 3 ) 行列式上下翻转,再左右翻转,得 D n + 1 = ∣ 1 1 ⋯ 1 a − n a − n + 1 ⋯ a ⋮ ⋮ ⋮ ( a − n ) n − 1 ( a − n + 1 ) n − 1 ⋅ ⋅ ⋅ a n − 1 ( a − n ) n ( a − n + 1 ) n ⋅ ⋅ ⋅ a n ∣ = ∏ 1 ≤ j < i ≤ n + 1 ( i − j ) ( 4 ) D 2 n 的第 2 n 行依次与第 2 n − 1 行 ⋯ 第 2 行对换(作 2 n − 2 次相邻两行的对换), 再把第 2 n 列依次与第 2 n − 1 列 ⋯ 第 2 列对换,得 D 2 n = ∣ a n b n 0 ⋯ 0 c n d n 0 ⋯ 0 0 0 a 1 b 1 ⋱ ⋱ ⋮ ⋮ a 1 b 1 c 1 d 1 ⋱ ⋱ 0 0 c 1 d 1 ∣ = ( a n d n − b n c n ) D 2 ( n − 1 ) ,递推,得 D 2 n = ( a n d n − b n c n ) ⋯ ( a 1 d 1 − b 1 c 1 ) = ∏ i = 1 n ( a i d i − b i c i ) ( 5 ) D n = ∣ 1 + a 1 a 1 ⋯ a 1 a 2 1 + a 2 ⋯ a 2 ⋮ ⋮ ⋮ a n a n ⋯ 1 + a n ∣ = c 1 − c 2 , c 2 − c 3 ⋯ c n − 1 − c n ∣ 1 0 0 ⋯ a 1 − 1 1 0 ⋯ a 2 0 − 1 1 ⋯ a 3 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 + a n ∣ = r 2 + r 1 , r 3 + r 2 ⋯ r n + r n − 1 ∣ 1 0 0 ⋯ a 1 0 1 0 ⋯ a 1 + a 2 0 0 1 ⋯ a 1 + a 2 + a 3 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 + a 1 + a 2 + ⋯ + a n ∣ = ∑ i = 1 n a i + 1 ( 6 ) D n = ∣ 0 1 2 ⋯ n − 1 1 0 1 ⋯ n − 2 2 1 0 ⋯ n − 3 ⋮ ⋮ ⋮ ⋮ n − 1 n − 2 n − 3 ⋯ 0 ∣ = r n − r n − 1 , r n − 1 − r n − 2 ⋯ r 2 − r 1 ∣ 0 1 ⋯ n − 2 n − 1 1 − 1 ⋯ − 1 − 1 1 1 ⋯ − 1 − 1 ⋮ ⋮ ⋮ ⋮ 1 1 ⋯ 1 − 1 ∣ = c 1 + c n , c 2 + c n , ⋯ c n − 1 + c n ∣ n − 1 n ⋯ 2 n − 3 n − 1 0 − 2 ⋯ − 2 − 1 0 0 ⋯ − 2 − 1 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 − 1 ∣ = ( − 1 ) n − 1 ( n − 1 ) 2 n − 2 . ( 7 ) D n = ∣ 1 + a 1 1 ⋯ 1 1 1 + a 2 ⋯ 1 ⋮ ⋮ ⋮ 1 1 ⋯ 1 + a n ∣ = r 2 − r 1 , r 3 − r 1 ⋯ r n − r 1 ∣ 1 + a 1 1 ⋯ 1 − a 1 a 2 ⋮ ⋱ − a 1 a n ∣ = c 1 + a 1 a 2 c 2 , c 1 + a 1 a 3 c 3 , ⋯ c 1 + a 1 a n c n ∣ b 1 ⋯ 1 0 a 2 ⋮ ⋱ 0 a n ∣ , 因为 b = 1 + a 1 + a 1 ∑ i = 2 n 1 a i = a 1 ( 1 + ∑ i = 1 n 1 a i ) ,所以 D n = a 1 ⋯ a n ( 1 + ∑ i = 1 n 1 a i ) . \begin{aligned} &\ \ (1)\ D_n=\left|\begin{array}{cccc}a & &1\\\\&\ddots\\\\1 & &a\end{array}\right|\xlongequal{r_1-r_n}\left|\begin{array}{cccc}a-1 & &-(a-1)\\\\&\ddots\\\\1 & &a\end{array}\right|\xlongequal{c_n+c_1}\left|\begin{array}{cccc}a-1 & &0\\\\&\ddots\\\\1 & &a+1\end{array}\right|=(a^2-1)a^{n-2}.\\\\ &\ \ (2)\ D_n=\left|\begin{array}{cccc}x &a &\cdot\cdot\cdot &a\\\\a &x &\cdot\cdot\cdot &a\\\\\vdots & & &\vdots\\\\a &a &\cdot\cdot\cdot &x\end{array}\right|\xlongequal{r_n-r_{n-1}, r_{n-1}-r_{n-2}\cdots r_2-r_1}\left|\begin{array}{cccc}x &a &\cdot\cdot\cdot &a &a\\\\-(x-a) &x-a &\cdot\cdot\cdot & 0 &0\\\\0 &-(x-a) &\cdot\cdot\cdot & 0 &0\\\\\vdots & & &\vdots &\vdots\\\\0 &0 &\cdot\cdot\cdot &-(x-a) &x-a\end{array}\right|\\\\ &\ \ \ \ \ \ \ \ \xlongequal{c_{n-1}+c_n, c_{n-2}+r_{n-1}\cdots c_1+c_2}\left|\begin{array}{cccc}x+(n-1)a &(n-1)a &\cdot\cdot\cdot &2a &a\\\\0 &x-a &\cdot\cdot\cdot & 0 &0\\\\0 &0 &\cdot\cdot\cdot & 0 &0\\\\\vdots & & &\vdots &\vdots\\\\0 &0 &\cdot\cdot\cdot &0 &x-a\end{array}\right|=[x+(n-1)a](x-a)^{n-1}\\\\ &\ \ (3)\ 行列式上下翻转,再左右翻转,得\\\\ &\ \ \ \ \ \ \ \ D_{n+1}=\left|\begin{array}{cccc}1 &1 &\cdots &1\\\\a-n &a-n+1 &\cdots &a\\\\\vdots &\vdots & &\vdots\\\\(a-n)^{n-1} &(a-n+1)^{n-1} &\cdot\cdot\cdot &a^{n-1}\\\\(a-n)^n &(a-n+1)^n &\cdot\cdot\cdot &a^n\end{array}\right|=\prod_{1 \le j \lt i \le n+1}(i-j)\\\\ &\ \ (4)\ D_{2n}的第2n行依次与第2n-1行\cdots第2行对换(作2n-2次相邻两行的对换),\\\\ &\ \ \ \ \ \ \ \ 再把第2n列依次与第2n-1列\cdots第2列对换,得\\\\ &\ \ \ \ \ \ \ \ D_{2n}=\left|\begin{array}{cccc}a_n &b_n &0 & &\cdots & & &0\\\\c_n & d_n &0 & &\cdots & & &0\\\\0 &0 &a_1 & & & & &b_1\\\\ & & &\ddots & & &\ddots &\\\\\vdots &\vdots & & &a_1 &b_1& &\\\\ & & & &c_1 &d_1& &\\\\ & & &\ddots & & &\ddots &\\\\0 &0 &c_1 & & & & &d_1\end{array}\right|=(a_nd_n-b_nc_n)D_{2(n-1)},递推,得\\\\ &\ \ \ \ \ \ \ \ D_{2n}=(a_nd_n-b_nc_n)\cdots(a_1d_1-b_1c_1)=\prod_{i=1}^{n}(a_id_i-b_ic_i)\\\\ &\ \ (5)\ D_n=\left|\begin{array}{cccc}1+a_1 &a_1 &\cdots &a_1\\\\a_2 &1+a_2 &\cdots &a_2\\\\\vdots &\vdots & &\vdots\\\\a_n &a_n &\cdots &1+a_n\end{array}\right|\xlongequal{c_1-c_2, c_2-c_3\cdots c_{n-1}-c_n}\left|\begin{array}{cccc}1 &0 &0 &\cdots &a_1\\\\-1 &1 &0 &\cdots &a_2\\\\0 &-1 &1 &\cdots &a_3\\\\\vdots &\vdots &\vdots & &\vdots\\\\0 &0 &0 &\cdots &1+a_n\end{array}\right|\\\\ &\ \ \ \ \ \ \ \ \xlongequal{r_2+r_1, r_3+r_2\cdots r_n+r_{n-1}}\left|\begin{array}{cccc}1 &0 &0 &\cdots &a_1\\\\0 &1 &0 &\cdots &a_1+a_2\\\\0 &0 &1 &\cdots &a_1+a_2+a_3\\\\\vdots &\vdots &\vdots & &\vdots\\\\0 &0 &0 &\cdots &1+a_1+a_2+\cdots+a_n\end{array}\right|=\sum_{i=1}^na_i+1\\\\ &\ \ (6)\ D_n=\left|\begin{array}{cccc}0 &1 &2 &\cdots &n-1\\\\1 &0 &1 &\cdots &n-2\\\\2 &1 &0 &\cdots &n-3\\\\\vdots &\vdots &\vdots & &\vdots\\\\n-1 &n-2 &n-3 &\cdots &0\end{array}\right|\xlongequal{r_n-r_{n-1}, r_{n-1}-r_{n-2}\cdots r_2-r_1}\left|\begin{array}{cccc}0 &1 &\cdots &n-2 &n-1\\\\1 &-1 &\cdots &-1 &-1\\\\1 &1 &\cdots &-1 &-1\\\\\vdots &\vdots & &\vdots &\vdots\\\\1 &1 &\cdots &1 &-1\end{array}\right|\\\\ &\ \ \ \ \ \ \ \ \xlongequal{c_1+c_n, c_2+c_n, \cdots c_{n-1}+c_n}\left|\begin{array}{cccc}n-1 &n &\cdots &2n-3 &n-1\\\\0 &-2 &\cdots &-2 &-1\\\\0 &0 &\cdots &-2 &-1\\\\\vdots &\vdots & &\vdots &\vdots\\\\0 &0 &\cdots &0 &-1\end{array}\right|=(-1)^{n-1}(n-1)2^{n-2}.\\\\ &\ \ (7)\ D_n=\left|\begin{array}{cccc}1+a_1 &1 &\cdots &1\\\\1 &1+a_2 &\cdots &1\\\\\vdots &\vdots & &\vdots\\\\1 &1 &\cdots &1+a_n\end{array}\right|\xlongequal{r_2-r_1, r_3-r_1\cdots r_n-r_1}\left|\begin{array}{cccc}1+a_1 &1 &\cdots &1\\\\-a_1 &a_2 & &\\\\\vdots & &\ddots &\\\\-a_1 & & &a_n\end{array}\right|\\\\ &\ \ \ \ \ \ \ \ \xlongequal{c_1+\frac{a_1}{a_2}c_2, c_1+\frac{a_1}{a_3}c_3, \cdots c_1+\frac{a_1}{a_n}c_n}\left|\begin{array}{cccc}b &1 &\cdots &1\\\\0 &a_2 & &\\\\\vdots & &\ddots &\\\\0 & & &a_n\end{array}\right|,\\\\ &\ \ \ \ \ \ \ \ 因为b=1+a_1+a_1\sum_{i=2}^n\frac{1}{a_i}=a_1\left(1+\sum_{i=1}^n\frac{1}{a_i}\right),所以D_n=a_1\cdots a_n\left(1+\sum_{i=1}^n\frac{1}{a_i}\right). & \end{aligned} (1) Dn= a1⋱1a r1−rn a−11⋱−(a−1)a cn+c1 a−11⋱0a+1 =(a2−1)an−2. (2) Dn= xa⋮aaxa⋅⋅⋅⋅⋅⋅⋅⋅⋅aa⋮x rn−rn−1,rn−1−rn−2⋯r2−r1 x−(x−a)0⋮0ax−a−(x−a)0⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅a00⋮−(x−a)a00⋮x−a cn−1+cn,cn−2+rn−1⋯c1+c2 x+(n−1)a00⋮0(n−1)ax−a00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2a00⋮0a00⋮x−a =[x+(n−1)a](x−a)n−1 (3) 行列式上下翻转,再左右翻转,得 Dn+1= 1a−n⋮(a−n)n−1(a−n)n1a−n+1⋮(a−n+1)n−1(a−n+1)n⋯⋯⋅⋅⋅⋅⋅⋅1a⋮an−1an =1≤j<i≤n+1∏(i−j) (4) D2n的第2n行依次与第2n−1行⋯第2行对换(作2n−2次相邻两行的对换), 再把第2n列依次与第2n−1列⋯第2列对换,得 D2n= ancn0⋮0bndn0⋮000a1c1⋱⋱⋯⋯a1c1b1d1⋱⋱00b1d1 =(andn−bncn)D2(n−1),递推,得 D2n=(andn−bncn)⋯(a1d1−b1c1)=i=1∏n(aidi−bici) (5) Dn= 1+a1a2⋮ana11+a2⋮an⋯⋯⋯a1a2⋮1+an c1−c2,c2−c3⋯cn−1−cn 1−10⋮001−1⋮0001⋮0⋯⋯⋯⋯a1a2a3⋮1+an r2+r1,r3+r2⋯rn+rn−1 100⋮0010⋮0001⋮0⋯⋯⋯⋯a1a1+a2a1+a2+a3⋮1+a1+a2+⋯+an =i=1∑nai+1 (6) Dn= 012⋮n−1101⋮n−2210⋮n−3⋯⋯⋯⋯n−1n−2n−3⋮0 rn−rn−1,rn−1−rn−2⋯r2−r1 011⋮11−11⋮1⋯⋯⋯⋯n−2−1−1⋮1n−1−1−1⋮−1 c1+cn,c2+cn,⋯cn−1+cn n−100⋮0n−20⋮0⋯⋯⋯⋯2n−3−2−2⋮0n−1−1−1⋮−1 =(−1)n−1(n−1)2n−2. (7) Dn= 1+a11⋮111+a2⋮1⋯⋯⋯11⋮1+an r2−r1,r3−r1⋯rn−r1 1+a1−a1⋮−a11a2⋯⋱1an c1+a2a1c2,c1+a3a1c3,⋯c1+ana1cn b0⋮01a2⋯⋱1an , 因为b=1+a1+a1i=2∑nai1=a1(1+i=1∑nai1),所以Dn=a1⋯an(1+i=1∑nai1).
9. 设 D = ∣ 3 1 − 1 2 − 5 1 3 − 4 2 0 1 − 1 1 − 5 3 − 3 ∣ , D 的 ( i , j ) 元的代数余子式记作 A i j ,求 A 31 + 3 A 32 − 2 A 33 + 2 A 34 . \begin{aligned}&9. \ 设D=\left|\begin{array}{cccc}3 &1 &-1 &2\\\\-5 &1 &3 &-4\\\\2 &0 &1 &-1\\\\1 &-5 &3 &-3\end{array}\right|,D的(i, \ j)元的代数余子式记作A_{ij},求A_{31}+3A_{32}-2A_{33}+2A_{34}.&\end{aligned} 9. 设D= 3−521110−5−13132−4−1−3 ,D的(i, j)元的代数余子式记作Aij,求A31+3A32−2A33+2A34.
解:
A 31 + 3 A 32 − 2 A 33 + 2 A 34 = ∣ 3 1 − 1 2 − 5 1 3 − 4 1 3 − 2 2 1 − 5 3 − 3 ∣ = c 4 + c 3 ∣ 3 1 − 1 1 − 5 1 3 − 1 1 3 − 2 0 1 − 5 3 0 ∣ = r 2 + r 1 ∣ 3 1 − 1 1 − 2 2 2 0 1 3 − 2 0 1 − 5 3 0 ∣ = r 2 / 2 , 按 c 4 展开 2 ∣ 1 − 1 − 1 1 3 − 2 1 − 5 3 ∣ = r 2 − r 1 , r 3 − r 1 2 ∣ 1 − 1 − 1 0 4 − 1 0 − 4 4 ∣ = r 3 + r 2 2 ∣ 1 − 1 − 1 0 4 − 1 0 0 3 ∣ = 24 \begin{aligned} &\ \ A_{31}+3A_{32}-2A_{33}+2A_{34}=\left|\begin{array}{cccc}3 &1 &-1 &2\\\\-5 &1 &3 &-4\\\\1 &3 &-2 &2\\\\1 &-5 &3 &-3\end{array}\right|\xlongequal{c_4+c_3}\left|\begin{array}{cccc}3 &1 &-1 &1\\\\-5 &1 &3 &-1\\\\1 &3 &-2 &0\\\\1 &-5 &3 &0\end{array}\right|\xlongequal{r_2+r_1}\left|\begin{array}{cccc}3 &1 &-1 &1\\\\-2 &2 &2 &0\\\\1 &3 &-2 &0\\\\1 &-5 &3 &0\end{array}\right|\\\\ &\ \ \xlongequal{r_2/2, 按c_4展开}2\left|\begin{array}{cccc}1 &-1 &-1\\\\1 &3 &-2\\\\1 &-5 &3\end{array}\right|\xlongequal{r_2-r_1, r_3-r_1}2\left|\begin{array}{cccc}1 &-1 &-1\\\\0 &4 &-1\\\\0 &-4 &4\end{array}\right|\xlongequal{r_3+r_2}2\left|\begin{array}{cccc}1 &-1 &-1\\\\0 &4 &-1\\\\0 &0 &3\end{array}\right|=24 & \end{aligned} A31+3A32−2A33+2A34= 3−511113−5−13−232−42−3 c4+c3 3−511113−5−13−231−100 r2+r1 3−211123−5−12−231000 r2/2,按c4展开2 111−13−5−1−23 r2−r1,r3−r12 100−14−4−1−14 r3+r22 100−140−1−13 =24