LeetCode //C - 124. Binary Tree Maximum Path Sum

124. Binary Tree Maximum Path Sum

A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node’s values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.
 

Example 1:

在这里插入图片描述

Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:

在这里插入图片描述

Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.

Constraints:
  • The number of nodes in the tree is in the range [ 1 , 3 ∗ 1 0 4 1, 3 * 10^4 1,3104]
  • -1000 <= Node.val <= 1000

From: LeetCode
Link: 124. Binary Tree Maximum Path Sum


Solution:

Ideas:

Overview:
The problem is to find the maximum path sum in a binary tree. A “path” here means any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.

Approach:
To solve this problem, we perform a post-order traversal of the tree. For each node, we calculate two things:

  1. The maximum path sum considering the current node as an endpoint.
  2. The maximum path sum that could be formed using the current node, which might include paths from its left and/or right child.

The reason we need both values is that while the first one (endpoint value) helps us build the path sum for the parent node, the second value (including the current node) helps us track the global maximum path sum across the tree.

Code Explanation:

  1. helper function: This is a recursive function that traverses the binary tree in a post-order manner. It calculates the maximum path sum for each node and updates the global maximum path sum.

  2. globalMax: This variable keeps track of the maximum path sum encountered so far across the entire tree.

  3. leftMax and rightMax: For each node, we calculate the maximum path sum for its left child and right child.

  4. maxSingle: This represents the maximum path sum considering the current node as an endpoint. This is calculated as the maximum of:

  • The node’s value itself.
  • The node’s value + maximum path sum of the left child.
  • The node’s value + maximum path sum of the right child.
  1. maxTop: This represents the maximum path sum that could be formed using the current node. This is calculated as the maximum of:
  • maxSingle (as explained above).
  • The path sum considering both left and right children + the current node’s value.
  1. globalMax update: For each node, we update the globalMax to be the maximum of the current globalMax and maxTop.

  2. Returning from helper function: We return maxSingle because this represents the maximum value that can be used to form a path sum for the current node’s parent.

  3. maxPathSum function: This function initializes the globalMax to the smallest possible integer value and then calls the helper function to traverse the tree and find the maximum path sum. Finally, it returns the globalMax.

Code:
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
int helper(struct TreeNode* root, int* globalMax) {
    if (!root) {
        return 0;
    }

    int leftMax = helper(root->left, globalMax);
    int rightMax = helper(root->right, globalMax);

    int maxSingle = fmax(fmax(leftMax, rightMax) + root->val, root->val);
    int maxTop = fmax(maxSingle, leftMax + rightMax + root->val);

    *globalMax = fmax(*globalMax, maxTop);

    return maxSingle;
}

int maxPathSum(struct TreeNode* root) {
    int globalMax = INT_MIN;
    helper(root, &globalMax);
    return globalMax;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值