LeetCode //C - 790. Domino and Tromino Tiling

790. Domino and Tromino Tiling

You have two types of tiles: a 2 x 1 domino shape and a tromino shape. You may rotate these shapes.
在这里插入图片描述
Given an integer n, return the number of ways to tile an 2 x n board. Since the answer may be very large, return it modulo 1 0 9 + 7 10^9 + 7 109+7.

In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.
 

Example 1:

在这里插入图片描述

Input: n = 3
Output: 5
Explanation: The five different ways are show above.

Example 2:

Input: n = 1
Output: 1

Constraints:
  • 1 <= n <= 1000

From: LeetCode
Link: 790. Domino and Tromino Tiling


Solution:

Ideas:
  1. Define a recurrence relation to calculate the number of tilings for a board of width n.
  2. The base cases will be small widths for which we can manually count the number of tilings.
  3. For larger widths, we build up the solution from the base cases, using the recurrence relation.
  4. We need to consider the last column which could be filled by:
    • A vertical domino, which leaves the subproblem of tiling a 2 x (n-1) board.
    • Two horizontal dominos, which leaves the subproblem of tiling a 2 x (n-2) board.
    • A tromino along with a domino, which will lead to two subproblems: tiling a 2 x (n-2) board and a 2 x (n-3) board.
  5. Since the answer can be very large, we will return it modulo 1 0 9 + 7 10^9+7 109+7.
Caode:
int numTilings(int n) {
    if (n == 1) return 1;
    if (n == 2) return 2;
    if (n == 3) return 5;

    long dp[n+1];
    dp[0] = 1; dp[1] = 1; dp[2] = 2; dp[3] = 5;

    for (int i = 4; i <= n; ++i) {
        dp[i] = (2 * dp[i-1] % 1000000007 + dp[i-3]) % 1000000007; // Main recurrence relation
    }

    return (int) dp[n];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值