639. Decode Ways II
A message containing letters from A-Z can be encoded into numbers using the following mapping:
‘A’ -> “1”
‘B’ -> “2”
…
‘Z’ -> “26”
To decode an encoded message, all the digits must be grouped then mapped back into letters using the reverse of the mapping above (there may be multiple ways). For example, “11106” can be mapped into:
- “AAJF” with the grouping (1 1 10 6)
- “KJF” with the grouping (11 10 6)
Note that the grouping (1 11 06) is invalid because “06” cannot be mapped into ‘F’ since “6” is different from “06”.
In addition to the mapping above, an encoded message may contain the '’ character, which can represent any digit from ‘1’ to ‘9’ (‘0’ is excluded). For example, the encoded message "1" may represent any of the encoded messages “11”, “12”, “13”, “14”, “15”, “16”, “17”, “18”, or “19”. Decoding “1*” is equivalent to decoding any of the encoded messages it can represent.
Given a string s consisting of digits and ‘*’ characters, return the number of ways to decode it.
Since the answer may be very large, return it modulo
1
0
9
+
7
10^9 + 7
109+7.
Example 1:
Input: s = “"
Output: 9
Explanation: The encoded message can represent any of the encoded messages “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, or “9”.
Each of these can be decoded to the strings “A”, “B”, “C”, “D”, “E”, “F”, “G”, “H”, and “I” respectively.
Hence, there are a total of 9 ways to decode "”.
Example 2:
Input: s = “1*”
Output: 18
Explanation: The encoded message can represent any of the encoded messages “11”, “12”, “13”, “14”, “15”, “16”, “17”, “18”, or “19”.
Each of these encoded messages have 2 ways to be decoded (e.g. “11” can be decoded to “AA” or “K”).
Hence, there are a total of 9 * 2 = 18 ways to decode “1*”.
Example 3:
Input: s = “2*”
Output: 15
Explanation: The encoded message can represent any of the encoded messages “21”, “22”, “23”, “24”, “25”, “26”, “27”, “28”, or “29”.
“21”, “22”, “23”, “24”, “25”, and “26” have 2 ways of being decoded, but “27”, “28”, and “29” only have 1 way.
Hence, there are a total of (6 * 2) + (3 * 1) = 12 + 3 = 15 ways to decode “2*”.
Constraints:
- 1 < = s . l e n g t h < = 1 0 5 1 <= s.length <= 10^5 1<=s.length<=105
- s[i] is a digit or ‘*’.
From: LeetCode
Link: 639. Decode Ways II
Solution:
Ideas:
1. DP Transition:
- Let dp[i] be the number of ways to decode s[0…i].
- We update dp[i] based on:
- The single character decode (s[i] by itself).
- The two-character decode (s[i-1]s[i] as a pair).
- dp[i] depends only on dp[i-1] and dp[i-2], so we use two variables to optimize space.
2. Handling ‘*’ cases:
- If s[i] == ‘*’, it represents any of 1-9, so dp[i] += 9 * dp[i-1].
- If s[i-1] == ‘*’:
- *s[i] can be 11-19 (9 ways) and 21-26 (6 ways).
- If s[i] == ‘’ and s[i-1] == '’:
- ** can be 11-19 (9 ways) and 21-26 (6 ways), so 15 additional ways.
3. Modulo Constraint:
- Since numbers can be large, results are taken modulo 1 0 9 + 7 10^9 + 7 109+7.
Code:
#define MOD 1000000007
int numDecodings(char* s) {
int n = strlen(s);
if (n == 0) return 0;
// Two DP variables
long long prev2 = 1, prev1 = (s[0] == '*') ? 9 : (s[0] == '0' ? 0 : 1);
for (int i = 1; i < n; i++) {
long long curr = 0;
// Single character decode
if (s[i] == '*') {
curr = (prev1 * 9) % MOD;
} else if (s[i] != '0') {
curr = prev1;
}
// Two-character decode
if (s[i - 1] == '*') {
if (s[i] == '*') {
curr = (curr + prev2 * 15) % MOD; // "**" can be "11-19" (9) + "21-26" (6)
} else if (s[i] >= '0' && s[i] <= '6') {
curr = (curr + prev2 * 2) % MOD; // "*0-6" can be "10-16", "20-26"
} else {
curr = (curr + prev2) % MOD; // "*7-9" can only be "17-19"
}
} else if (s[i - 1] == '1') {
if (s[i] == '*') {
curr = (curr + prev2 * 9) % MOD; // "1*" can be "11-19"
} else {
curr = (curr + prev2) % MOD; // "1x" valid for all digits
}
} else if (s[i - 1] == '2') {
if (s[i] == '*') {
curr = (curr + prev2 * 6) % MOD; // "2*" can be "21-26"
} else if (s[i] <= '6') {
curr = (curr + prev2) % MOD; // "2x" valid for x=0-6
}
}
// Update DP variables
prev2 = prev1;
prev1 = curr;
}
return (int) prev1;
}