传统的数据服务模式是业务用业务语言提出需求,科技人员和业务部门就业务语言如何转换成科技数据口径进行确认,之后开发报表提供业务测试,测试中常常发现报表实现和业务需求有差距,还要反复沟通,从业务提出报表需求到最终投产,快则三五天,慢则个把月。
基于以上原因,想通过搭建一套数据平台,支持快速灵活、交互式、探索性的数据查询和分析。让业务人不再依赖、不再等待大量、使用简单拖拉拽操作就能够完成日常的数据分析工作。
那么问题来了,搭建一套基于明细级数据自助查询平台,如何规划技术架构、数据模型,以及BI工具的选型。
这里提供一个江苏银行的大数据平台案例。
传统来讲,银行定制一张报表,分析某个业务数据,主要通过业务部门提出需求,科技部门编写程序来实现。其中的问题,题主也说了,从提出需求到科技部最终开发完报表,中间存在反复的口径沟通、试验取数的过程。一张报表,从考虑排期问题,提出需求,到最终完成快则一两周,慢则几个月。
解决这个问题的有效办法是:
1、把明细宽表他们可理解的数据,给到业务部门,交由业务人员自助探索分析。
2、基础查询类报表:来自于基层业务和日常工作,功能作用于某一项具体的工作,比如销售业绩查询、商品库存查询、在途库存查询、采购订单查询等,形成固定类目的查询报表,用户在工作需要时,会通过查询此类报表,来得到自己想要的数据,以支撑自己的工作。
后者主要还是IT部门负责,前者IT部门可推动去做。这里着重讲讲前者。