1、A+B问题

问题描述:

给出两个整数a和b, 求他们的和, 但不能使用 + 等数学运算符。

说明

a和b都是 32位 整数么?

  • 是的

我可以使用位运算符么?

  • 当然可以
样例

如果 a=1 并且 b=2,返回3

这一题是LintCode上的第一题,有点意思。重要的不是代码,而是思考的过程。我一开始也没有思路,后来参考了一下别人的思路,见笑了~

首先要想到用位运算

首先肯定要想到用位运算来操作,即用二进制来处理,好,既然想到这里,当然要举个例子来想想,最简单的1+2

1的二进制 ····0001

2的二进制 ····0010

3的二进制 ····0011

那a+b不就等于a|b吗?那么,再来验证下1+3

1的二进制 ····0001

3的二进制 ····0011

4的二进制 ····0100

发现之前的猜想错误了,然后再经过一些其他简单的验算,我们会轻而易举的发现一个规律,如果没有进位,那么a+b = a|b 如果有进位就不成立。

所以接下来要处理进位的问题,我们在用1+3来研究下进位的问题,如果我们忽略有进位的位置后,再加上应该进位的位置,就是我们的值。

                             1的二进制(a) ····0001

                             3的二进制(b) ····0011

                 忽略进位的二进制(c) ····0010(忽略有进位的位),既然忽略了进位,那么接下来肯定要加上进位

                        应该进位的值(d) ····0010

我们的值应该是c+d(但是c和d还是有进位,那么再重复上述操作),即:

                                  c的二进制 ····0010

                                  d的二进制 ····0010

                 忽略进位的二进制(e) ····0000     

                          应该进位的值(f) ····0100

结果就是e+f = 4

所以我们的整体过程应该是先计算a和b(忽略进位),相当于位运算符a^b,再计算应该进位的值,相当于位运算a&b<<1,再把两者相加,相当于位运算a|b(如果还有进位,那么重复前面两步,不能直接a|b),没有进位后,结果就是a|b(之前得出的结论,如果没有进位那么a+b = a|b)。

第一个版本:(循环迭代)

  1. int aplusb(int a, int b) {  
  2.     int c = 0,d = 0;  
  3.     while((a&b) != 0){//检查a和b之间是否有进位   
  4.         c = a^b; //忽略进位相加   
  5.         d = (a&b)<<1;//应该进位的值   
  6.         a = c;  
  7.         b = d;  
  8.     }  
  9.     return a|b;//没有进位了,直接返回两者|值   
  10. }  
最直观的思路,但是其实是可以用迭代去做的,代码更清晰,俗话说:迭代是人,递归是神。哈哈

第二个版本:(递归)

  1. int aplusb(int a, int b) {    
  2.     if((a&b) == 0)  
  3.         return a|b;  
  4.     return aplusb(a^b,(a&b)<<1);  
  5. }  
感谢大家支持,我会持续更新LintCode上的题目,您的支持是我最大的动力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值