盛最多水的容器

本文介绍了一个O(n)时间复杂度的算法,用于解决寻找两条线段以最大化容器储水量的问题。算法使用双指针,分别从数组的开始和结束向中间移动,每次移动时保留高度较小的线段,以保持或增加容器的高度,从而增加储水量。通过不断调整指针位置,找到最大储水量的组合。
摘要由CSDN通过智能技术生成
class Solution {
public:
    int maxArea(vector<int>& height) {
        int size=height.size();
        int left=0,right=size-1;
        int ans=0;
        while(left<right){
            ans=max(ans,(right-left)*min(height[left],height[right]));
            if(height[left]>height[right])--right;
            else++left;
        }
        return ans;
    }
};

题目:给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

对O(n)的算法写一下自己的理解:一开始两个指针一个指向开头一个指向结尾,此时容器的底是最大的,接下来随着指针向内移动,会造成容器的底变小,在这种情况下想要让容器盛水变多,就只有在容器的高上下功夫。 那我们该如何决策哪个指针移动呢?我们能够发现不管是左指针向右移动一位,还是右指针向左移动一位,容器的底都是一样的,都比原来减少了 1。这种情况下我们想要让指针移动后的容器面积增大,就要使移动后的容器的高尽量大,所以我们选择指针所指的高较小的那个指针进行移动,这样我们就保留了容器较高的那条边,放弃了较小的那条边,以获得有更高的边的机会。

class Solution {

public:

    int maxArea(vector<int>& height) {

        int size=height.size();

        int left=0,right=size-1;

        int ans=0;

        while(left<right){

            ans=max(ans,(right-left)*min(height[left],height[right]));

            if(height[left]>height[right])--right;

            else++left;

        }

        return ans;

    }

};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值