class Solution {
public:
int maxArea(vector<int>& height) {
int size=height.size();
int left=0,right=size-1;
int ans=0;
while(left<right){
ans=max(ans,(right-left)*min(height[left],height[right]));
if(height[left]>height[right])--right;
else++left;
}
return ans;
}
};
题目:给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
对O(n)的算法写一下自己的理解:一开始两个指针一个指向开头一个指向结尾,此时容器的底是最大的,接下来随着指针向内移动,会造成容器的底变小,在这种情况下想要让容器盛水变多,就只有在容器的高上下功夫。 那我们该如何决策哪个指针移动呢?我们能够发现不管是左指针向右移动一位,还是右指针向左移动一位,容器的底都是一样的,都比原来减少了 1。这种情况下我们想要让指针移动后的容器面积增大,就要使移动后的容器的高尽量大,所以我们选择指针所指的高较小的那个指针进行移动,这样我们就保留了容器较高的那条边,放弃了较小的那条边,以获得有更高的边的机会。
class Solution {
public:
int maxArea(vector<int>& height) {
int size=height.size();
int left=0,right=size-1;
int ans=0;
while(left<right){
ans=max(ans,(right-left)*min(height[left],height[right]));
if(height[left]>height[right])--right;
else++left;
}
return ans;
}
};