这篇文章主要介绍了python数学建模基础教程,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获,下面让小编带着大家一起了解一下。
🌌python 数学应用
- 3.1 求下列积分的符号解
(1) ∫ 0 1 1 + 4 x d x \int_{0}^{1}\sqrt{1+4x}~dx ∫011+4x dx (2) ∫ 0 + ∞ e − x sin x d x \int_{0}^{+\infty}e^{-x}\sin x ~dx ∫0+∞e−xsinx dx
from sympy import*#导入sympy的所有函数 x=symbols('x')#创建符号变量 res1=integrate(sqrt(1+4*x),(x,0,1))#积分1 res2=integrate(exp(-x)*sin(x),(x,0,oo))#积分2
结果:
− 1 6 + 5 5 6 -\frac{1}{6}+\frac{5\sqrt{5}}{6} −61+655
1 2 \frac{1}{2} 21
3.2 求方程 x 3 − 4 x 2 + 6 x − 8 = 0 x^3-4x^2+6x-8=0 x3−4x2+6x−8=0 的符号解和数值解
from sympy import* from scipy.optimize import fsolve b=solve( x**3-4*x**2+6*x-8,x)#求符号解(求解出来是复数) f=lambda x: x**3-4*x**2+6*x-8 a=fsolve(f,0)#符号解(默认是牛顿迭代法,以0为初值,二阶导函数连续) print(a) print(b.n())#打印数值解
4 3 − 2 9 ( − 1 2 + 3 i 2 ) 64 27 + 2 114 9 3 + ( − 1 2 + 3 i 2 ) 64 27 + 2 114 9 3 \frac{4}{3} - \frac{2}{9 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{64}{27} + \frac{2 \sqrt{114}}{9}}} + \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{64}{27} + \frac{2 \sqrt{114}}{9}} 34−9(−21+23 i)32764+92114 2+(−21+23 i)32764+92114
4 3 + 2 9 ( − 1 2 + 3 i 2 ) 64 27 + 2 114 9 3 − ( − 1 2 + 3 i 2 ) 64 27 + 2 114 9 3 \frac{4}{3} +\frac{2}{9 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{64}{27} + \frac{2 \sqrt{114}}{9}}} -\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{64}{27} + \frac{2 \sqrt{114}}{9}} 34+9(−21+23 i)32764+92114 2−(−21+23 i)32764+92114
(数值解)array([2.8812394])
3.3 求方程组的符号解和数值解
{ x 2 − y − x = 3 x + 3 y = 6 \left\{ \begin{aligned} x^2-y-x&=3\\ x+3y=6 \end{aligned} \right. {x2−y−xx+3y=6=3
from sympy import* from scipy.optimize import fsolve x,y=symbols('x y') exp1=x**2-y-x-3 exp2=x+3*y-6 print(solve([exp1,exp2],[x,y])) 结果: #[(1/3 - sqrt(46)/3, sqrt(46)/9 + 17/9), (1/3 + sqrt(46)/3, 17/9 - sqrt(46)/9)]
- 3.4 求边值问题 y ′ ′ + y = x cos 2 x , y ( 0 ) = 1 , y ( 2 ) = 3 y^{''}+y=x\cos2x,y(0)=1,y(2)=3 y′′+y=xcos2x,y(0)=1,y(2)=3 的符号解.
from sympy import* y=Function('y')#将y定义为函数 exp=diff(y(x),x)+diff(y(x),x,2)-x*cos(2*x) dsolve(exp,ics={y(0):1,y(2):3})#附上初值条件
y ( x ) = x sin ( 2 x ) 10 − x cos ( 2 x ) 5 + 4 sin ( 2 x ) 25 + 13 cos ( 2 x ) 100 + 27 e 2 cos ( 4 ) − 87 − 36 e 2 sin ( 4 ) + 300 e 2 − 100 + 100 e 2 + ( − 213 e 2 + 36 e 2 sin ( 4 ) − 27 e 2 cos ( 4 ) ) e − x − 100 + 100 e 2 y{\left(x \right)} = \frac{x \sin{\left(2 x \right)}}{10} - \frac{x \cos{\left(2 x \right)}}{5} + \frac{4 \sin{\left(2 x \right)}}{25} + \frac{13 \cos{\left(2 x \right)}}{100} + \frac{27 e^{2} \cos{\left(4 \right)