根据搜索结果,以下是一些2024年比较主流的生成式工作流框架:
1. LangChain:LangChain是一个用于构建生成式AI工作流的开发框架,它支持多种语言模型、工具、数据源及其他系统的集成。
2. DSPy:DSPy是一个生成式AI工作流的开发框架,它允许开发者构建和部署复杂的工作流。
3. Dify:Dify是一个开源的大语言模型(LLM)应用开发平台,它结合了AI工作流、RAG流程、智能体能力、模型管理、可观测性特性等,允许快速从原型阶段过渡到生产阶段。
4. Coze:Coze是另一个生成式AI工作流的开发框架,尽管具体细节未在搜索结果中提及,但它被列在主流框架之中。
5. Claude MCP:Claude MCP是用于构建生成式AI工作流的框架之一,虽然具体信息未在搜索结果中详细说明,但它被提及为主流框架之一。
6. Haystack:Haystack是一个多功能的RAG框架,支持多种文档存储和流行语言模型集成,提供易于使用的API来构建自定义NLP管道。
7. RAGFlow by infiniflow:RAGFlow是一个新成员,专注于简洁性和效率,提供预构建的组件和工作流,简化基于RAG应用程序的开发流程。
8. txtai by neuml:txtai是一个多功能的AI驱动的数据平台,超越了传统的RAG框架,提供了一系列构建语义搜索、语言模型工作流以及文档处理流水线的全面工具。
这些框架代表了当前生成式AI工作流领域的主流技术和应用,涵盖了从语言处理到视觉识别等多个方面。开发者可以根据自己的需求选择合适的框架来构建和部署生成式AI工作流。