常用校验码(奇偶校验码、海明校验码、CRC校验码)

计算机系统运行时,各个部之间要进行数据交换. 为确保数据在传送过程正确无误,常使用检验码. 我们常使用的检验码有三种. 分别是奇偶校验码海明校验码循环冗余校验码(CRC)


奇偶校验码(Parity Codes)

奇偶校验码最简单,但只能检测出奇数位出错. 如果发生偶数位错误就无法检测. 但经研究是奇数位发生错误的概率大很多. 而且奇偶校验码无法检测出哪位出错.所以属于无法矫正错误的校验码。奇偶校验码是奇校验码偶校验码的统称. 它们都是通过在要校验的编码上加一位校验位组成. 如果是奇校验加上校验位后,编码中1的个数为奇数个。如果是偶校验加上校验位后,编码中1的个数为偶数个

例:
原编码   奇校验 偶校验
0000   0000 1 0000 0
0010   0010 0 0010 1
1100   1100 1 1100 0
1010   1010 1 1010 0

如果发生奇数个位传输出错,那么编码中1的个数就会发生变化. 从而校验出错误,要求从新传输数据。目前应用的奇偶校验码有3种.

水平奇偶校验码对每一个数据的编码添加校验位,使信息位与校验位处于同一行.

垂直奇偶校验码把数据分成若干组,一组数据排成一行,再加一行校验码. 针对每一行列采用奇校验 或 偶校验
例: 有32位数据10100101 00110110 11001100 10101011
垂直奇校验    垂直偶校验
10100101    10100101    数据
00110110    00110110
11001100    11001100
10101011    10101011
00001011    11110100    校验

水平垂直奇偶校验码就是同时用水平校验和垂直校验
例:
奇校验 奇水平     偶校验 偶水平
 10100101 1     10100101 0   数据
 00110110 1     00110110 0
 11001100 1     11001100 0
 10101011 0     10101011 1
 00001011 0     11110100 1   校验


  我们把传送过来的1100111000逐位相加就会得到一个1,应该注意的的,如果在传送中1100111000变成为0000111000,通过上面的运算也将得到1,接收方就会认为传送的数据是正确的,这个判断正确与否的过程称为校验。而使用上面方法进行的校验称为奇校验,奇校验只能判断传送数据中奇数个数据从0变为1或从1变为0的情况,对于传送中偶数个数据发生错误,它就无能为力了。
  Odd Parity(奇校验),校核数据完整性的一种方法,一个字节的8个数据位与校验位(parity bit )加起来之和有奇数个1。校验线路在收到数后,通过发生器在校验位填上0或1,以保证和是奇数个1。因此,校验位是0时,数据位中应该有奇数个1;而校验位是1时,数据位应该有偶数个1。如果读取数据时发现与此规则不符,CPU会下令重新传输数据。 

  奇/偶校验(ECC)是数据传送时采用的一种校正数据错误的一种方式,分为奇校验和偶校验两种。 如果是采用奇校验,在传送每一个字节的时候另外附加一位作为校验位,当实际数据中“1”的个数为偶数的时候,这个校验位就是“1”,否则这个校验位就是“0”,这样就可以保证传送数据满足奇校验的要求。在接收方收到数据时,将按照奇校验的要求检测数据中“1”的个数,如果是奇数,表示传送正确,否则表示传送错误。 同理偶校验的过程和奇校验的过程一样,只是检测数据中“1”的个数为偶数。


海明校验码(Hamming Code)

海明码也是利用奇偶性来校验数据的. 它是一种多重奇偶校验检错系统,它通过在数据位之间插入k个校验位,来扩大码距,从而实现检错和纠错.

设原来数据有n位,要加入k位校验码.怎么确定k的大小呢? k个校验位可以有pow(2,k) (代表2的k次方) 个编码,其中有一个代表是否出错. 剩下pow(2,k)-1个编码则用来表示到底是哪一位出错. 因为n个数据位和k个校验位都可能出错,所以k满足pow(2,k)-1 >= n+k

设 k个校验码为 Pk,...,P1, n个数据位为D(n-1),...,D1,D0,产生的海明码为 H(n+k),...,H1。如有8个数据位,根据pow(2,k)-1 >= n+k可以知道k最小是4。那么得到的海明码是:

H12 H11 H10 H9 H8 H7 H6 H5 H4 H3 H2 H1
D7 D6 D5 D4 P4 D3 D2 D1 P3 D0 P2 P1  (Pi在海明码的第pow(2,i-1)位置;数据位Di则依序从低到高占据海明码中剩下位置

然后怎么知道Pi校验哪个位呢. 自己可以列个校验关系表

海明码 下标 校验位组
H1(P1) P1
H2(P2) P2
H3(D0) 1+2 P1,P2
H4(P3) P3
H5(D1) 1+4 P1,P3
H6(D2) 2+4 P2,P3
H7(D3) 1+2+4 P1,P2,P3
H8(P4) P4
H9(D4) 1+8 P1,P4
H10(D5) 2+8 P2,P4
H11(D6) 1+2+8 P1,P2,P4
H12(D7) 4+8 P3,P4

从表中可以看出
P1校验 P1,D0,D1,D3,D4,D6
P2校验 P2,D0,D2,D3,D5,D6
P3校验 P3,D1,D2,D3,D7
P4校验 P4,D4,D5,D6,D7
其实上表很有规律很容易记,要知道海明码Hi由哪些校验组校验,可以把i化成二进制数数中哪些位k是1,就有哪些Pk校验

如H7 7=0111 所以由P1,P2,P3。 H11 11=1011 所以由P1,P2,P4。  H3 3=0011 所以由P1,P2

那看看Pi的值怎么确定,如果使用偶校验,则
P1=D0 xor D1 xor D3 xor D4 xor D6
P2=D0 xor D2 xor D3 xor D5 xor D6
P3=D1 xor D2 xor D3 xor D7
P4=D4 xor D5 xor D6 xor D7
其中xor是异或运算,奇校验的话把偶校验的值取反即可.


那怎么校验错误呢. 其实也很简单. 先做下面运算.
G1 = P1 xor D0 xor D1 xor D3 xor D4 xor D6
G2 = P2 xor D0 xor D2 xor D3 xor D5 xor D6
G3 = P3 xor D1 xor D2 xor D3 xor D7
G4 = P4 xor D4 xor D5 xor D6 xor D7

若采用偶校验,则G4G3G2G1全为0表示接收到的数据无错误(奇校验则应全为1)。当G4G3G2G1不全为0说明发生了错误,而且G4G3G2G1的十进制指出了发生错误的位置,例如 G4G3G2G1=1010,说明H10(D5)出错了,将其取反即可纠正错误。

异或 ,英文为 exclusive OR ,或缩写成 xor 。它应用于逻辑运算。异或的数学符号为“⊕”,计算机符号为“xor”。 a⊕b = (¬a ∧ b) ∨ (a ∧¬b)
如果a、b两个值不相同,则异或结果为1。如果a、b两个值相同,异或结果为0。

循环冗余校验码(Cyclic Redundancy Check)


CRC码利用生成多项式为k个数据位产生r个校验位进行编码,其编码长度为n=k+r所以又称 (n,k)码. CRC码广泛应用于数据通信领域和磁介质存储系统中. CRC理论非常复杂,一般书就给个例题,讲讲方法.现在简单介绍下它的原理:

在k位信息码后接r位校验码,对于一个给定的(n,k)码。可以证明(数学高手自己琢磨证明过程)存在一个最高次幂为 n-k=r 的多项式g(x),根据g(x)可以生成k位信息的校验码,g(x)被称为 生成多项式

用C(x)=C(k-1)C(k-2)...C0表示k个信息位,把C(x)左移r位,就是相当于 C(x)*pow(2,r) 给校验位空出r个位来了.给定一个 生成多项式g(x),可以求出一个校验位表达式r(x) 。C(x)*pow(2,r) / g(x) = q(x) + r(x)/g(x) 用C(x)*pow(2,r)去除生成多项式g(x)商为q(x)余数是r(x)。所以有C(x)*pow(2,r) = q(x)*g(x) + r(x)


C(x)*pow(2,r) + r(x)就是所求的n位CRC码,由上式可以看出它是生成多项式g(x)的倍式.所以如果用得到的n位CRC码去除g(x)如果余数是0,就证明数据正确. 否则可以根据余数知道出错位.
在CRC运算过程中,四则运算采用 mod 2运算(后面介绍),即不考虑进位和借位. 所以上式等价于C(x)*pow(2,r) + r(x) = q(x)*g(x)

继续前先说下基本概念吧.
1.多项式和二进制编码
x的最高次幂位对应二进制数的最高位.以下各位对应多项式的各幂次. 有此幂次项为1,无为0. x的最高幂次为r时, 对应的二进制数有r+1位 例如g(x)=pow(x,4) + pow(x,3) + x + 1 对应二进制编码是 11011

2.生成多项式是发送方和接受方的一个约定,也是一个二进制数,在整个传输过程中,这个数不会变.
在发送方利用 生成多项式 对信息多项式做模2运算生成校验码.
在接受方利用 生成多项式 对收到的 编码多项式 做模2运算校验和纠错.

生成多项式应满足:
a.生成多项式的最高位和最低位必须为1
b.当信息任何一位发生错误时,被生成多项式模2运算后应该使余数不为0
c.不同位发生错误时,应该使余数不同.
d.对余数继续做模2除,应使余数循环.

生成多项式很复杂,不过不用我们生成。

下面给出一些常用的生成多项式表
k 二进制码(自己根据多项式和二进制编码 的介绍转)
4 1011 或 1101
3 11011 或 10111
15 11 1011
31 26 100101


3.模2运算
a.加减法法则
0 +/- 0 = 0
0 +/- 1 = 1
1 +/- 0 = 1
1 +/- 1 = 0
注意:没有进位和借位

b.乘法法则
利用模2加求部分积之和,没有进位

c.除法法则
利用模2减求部分余数,没有借位,每商1位则部分余数减1位,余数最高位是1就商1,不是就商0,当部分余数的位数小于余数时,该余数就是最后余数.

例 1110 
1011)1100000
1011
1110
1011
1010
1011
0010(每商1位则部分余数减1位,所以前两个0写出)
0000
010(当部分余数的位数小于余数时,该余数就是最后余数)
最后商是1110余数是010

好了说了那么多没用的理论.下面讲下CRC的实际应用.例: 给定的生成多项式g(x)=1011, 用(7,4)CRC码对C(x)=1010进行编码.
由题目可以知道下列的信息:
C(x)=1010,n=7,k=4,r=3,g(x)=1011 C(x)*pow(2,3)=1010000 C(x)*pow(2,3) / g(x) = 1001 + 11/1011 所以r(x)=011.所以要求的编码为1010011
例2: 上题中,数据传输后变为1000011,试用纠错机制纠错. 1000011 / g(x) = 1011 + 110/1011

不能整除,所以出错了. 因为余数是110.查1011出错位表可以知道是第5位出错.对其求反即可.

 

  冗余码的计算方法是,先将信息码后面补0,补0的个数是生成多项式最高次幂;将补零之后的信息码除以G(X),注意除法过程中所用的减法是模2减法,即没有借位的减法,也就是异或运算。当被除数逐位除完时,得到比除数少一位的余数。此余数即为冗余位,将其添加在信息位后便构成CRC码字。

  例如,假设信息码字为11100011,生成多项式G(X)=X^5+X^4+X+1,计算CRC码字。

  G(X) = X^5+X^4+X+1,也就是110011,因为最高次是5,所以,在信息码字后补5个0,变为1110001100000。用1110001100000除以110011,余数为11010,即为所求的冗余位。

  因此发送出去的CRC码字为原始码字11100011末尾加上冗余位11010,即 1110001111010。接收端收到码字后,采用同样的方法验证,即将收到的码字除以G(X),发现余数是0,则认为码字在传输过程中没有出错。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页