Python函数提高
递归
递归的应用场景
递归是一种编程思想,应用场景如:
- 在日常开发中,如果要遍历一个文件夹下面所有的文件,通常会使用递归来实现;
- 很多算法离不开递归,例如:快速排序。
递归的特点
- 函数内部存在着自己调用自己的情况
- 函数一层层调用本身,直到递归终点,一层层返回调用
- 递归终点必须存在
- 有点像数学归纳法的过程
应用:n以内数字累加和
- 代码
# n+(n-1)+···+2+1
def sumToOneFrom(n):
# 1.如果是1,直接返回1 --递归终点
if num == 1:
return 1
# 2.如果不是1,对n-1调用自身,获得(n-1)+(n-2)+···+2+1的结果,并加上n
return n + sumToOneFrom(n-1)
result = sumToOneFrom(3)
# 输出结果为6
print(result)
lambda 表达式
lambda的应用场景
- 如果一个函数有一个返回值,并且只有一句代码,可以使用 lambda简化。
lambda语法
f=lambda 参数列表 : 表达式/返回值
- lambda表达式的参数可有可无,函数的参数在lambda表达式中完全适用。
- lambda表达式能像普通函数那样接收任何数量的各种形式的参数,但只能返回一个表达式的值。
- lambda本身是匿名函数,但也可以将其赋给某个变量,利用变量名+()调用
如:
words=lambda age,name : f"{age}岁的{name},你好"
print(words(18,"木子"))
#18岁的木子,你好
lambda的应用
带判断的lambda
bigger = lambda a, b: a if a > b else b
print(bigger(1000, 500))
#1000
列表数据按字典key的值排序
List.sort(key,reverse=False)
- key可指定为lambda匿名函数,将对每个元素按lambda的返回值进行排序
friends=["Rachel","Monica","Phoebe","Joey","Chandler","Ross"]
friends.sort(key=lambda name:name[0]) #按首字母排序
print(friends)
#['Chandler', 'Joey', 'Monica', 'Phoebe', 'Rachel', 'Ross']
高阶函数
把函数作为参数传入,这样的函数称为高阶函数,高阶函数是函数式编程的体现。函数式编程就是指这种高度抽象的编程范式。
体验高阶函数
abs()
函数可以完成对数字求绝对值计算。
abs(-10) # 10
round()
函数可以完成对数字的四舍五入计算。
round(1.2) # 1
round(1.9) # 2
需求:任意两个数字,取整取绝对值后再进行求和计算。
- 方法1
def add_num(a, b):
a=abs(a)
a=round(a)
b=abs(b)
b=round(b)
return a + b
result = add_num(-1.1, 2.2)
print(result) # 3
- 方法2
def sum_num(a, b, *funcs):
for f in funcs:
a=f(a)
b=f(b)
return a+b
result = sum_num(-1.1, 2.2, abs,round)
print(result) # 3
注意:两种方法对比之后,发现,方法2的代码会更加简洁,函数灵活性也更高。
函数式编程大量使用函数,减少了代码的重复,因此程序比较短,开发速度较快。
内置高阶函数
map()
map(func, List)
将传入的函数变量func
作用到List
变量的每个元素中,并将结果组成新的map迭代器(序列)返回。可用list()
转为列表
需求:计算numlist序列中各个数字的2次方。
numlist = [1, 2, 3, 4, 5]
def square(x):
return x ** 2
result = map(func, numlist)
print(result) # <map object at 0x0000013769653198>
print(list(result)) # [1, 4, 9, 16, 25]
reduce()
functools.reduce(func,List)
- 其中
func
必须有两个参数。每次func
计算的结果继续和序列的下一个元素一起传入func
。直到遍历序列。
注意:reduce()传入的参数func必须接收2个参数。
需求:计算numlist序列中各个数字的累加和。
import functools
list = [1, 2, 3, 4, 5]
def add(a, b):
return a + b
result = functools.reduce(func, list1)
print(result) # 15
filter()
filter(func, List)
- fliter函数用于过滤序列, 过滤掉不符合条件(传入func后返回为False)的元素, 返回一个 filter 对象。如果要转换为列表, 可以使用 list() 来转换。
numlist= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
def isEven(x):
return x % 2 == 0
result = filter(isEven, numlist)
print(result) # <filter object at 0x0000017AF9DC3198>
print(list(result)) # [2, 4, 6, 8, 10]