- 博客(134)
- 收藏
- 关注
原创 Java_面向对象之继承、抽象类
Java_面向对象之继承1.继承主要解决的问题:共性抽取2.继承关系当中的特点:子类可以拥有父类的“内容”子类可以拥有自己的专属内容3.格式定义父类的格式:public class 父类名称{ //、、、、}定义子类的格式:public class 子类名称 extends 父类名称{ //、、、}代码实践://父类public class Employee{ //定义成员方法 public void meth
2022-03-08 19:25:45 321
原创 Java_字符串、静态Static、Arrays数组工具类
Java_字符串、静态Static、Arrays数组工具类1.字符串(1)特点:字符串的内容不可变字符串可以共享使用字符串低层原理是byte[]字节数组(2)字符串的三种构造方法:public String():创建一个空白字符串,不含有任何内容public String(char[ ] array):根据字符数组的内容,来创建对应的字符串public String(byte[ ] array):根据字节数组的内容,来创建对应的字符串public class test{
2022-03-01 11:35:21 841
原创 Java_Scanner、Random、ArrayList
Java_Scanner、Random、ArrayList1.封装性在Java中的体现:方法;关键字private2.注意事项:如果使用关键字private进行修饰,则在本类中 可以进行访问,如果超出了本类,则不能直接访问3.间接访问关键字private:定义一对Getter和Setter方法;命名规则为:setXXX或getXXX;对于boolean类型,Getter方法需要写成isXXX的形式,而Setter方法规则不变示例一 :public class student{ String
2022-03-01 11:34:59 347
原创 Java_面向对象入门
Java_面向对象入门1.面向过程与面向对象(1)面向过程:强调步骤(2)面向对象:强调对象(3)代码演示://要求打印格式为:[4,9,94,4654,1]public class test{ public static void main(String[] args){ int[] array={4,9,94,4654,1}; //方法一:面向过程 System.out.print("["); for(
2022-02-07 20:09:01 559
原创 Java_数组
Java_数组1.数组的概念:是一种容器,可以同时存放多个数据值2.数组的特点:(1)数组是一种引用数据类型(2)数组当中的多个数据,类型必须统一(3)数组的长度在程序运行期间不可改变3.数组的初始化:在内存中创建一个数组,并且向其中赋予一些默认值4.数组初始化方式:(1)动态初始化:指定长度(2)静态初始化:指定内容5.动态初始化数组的格式:数据类型[] 数组名称=new 数据类型[数组长度]public class test{ public static void ma
2022-02-07 16:18:28 618
原创 Java_方法的重载
Java_方法的重载1.方法的重载:多个方法的名称一样,但是参数列表不一样public class test{ public static void main(String[] args){ System.out.println(sum(10, 20));//30 System.out.println(sum(10, 20, 30));//60 System.out.println(sum(10, 20, 30, 40));//100 }
2022-01-23 19:27:55 310
原创 Java_方法
Java_方法1.方法的定义格式(1)语句格式:修饰词 返回值类型 方法名称(参数类型 参数名称,...){ 方法体 return 返回值;}(2)注意:return 后面的“返回值”,必须和方法名称前面的“返回值类型”,保持对应2.方法的调用格式(1)单独调用:方法名称(参数);(2)打印调用:System.out.println(方法名称(参数));(3)赋值调用:数据类型 变量名称 = 方法名称(参数);(4)代码实现:public class test{
2022-01-23 16:09:49 412
原创 Java_选择语句与循环语句
Java_选择语句与循环语句1.选择语句–switch(1)语句格式:switch (表达式) { case 常量值1: 语句体1; break; case 常量值2: 语句体2; break; .... default: 语句体n+1; break;}(2)流程图:(3)代码实现:public class test{ public stati
2022-01-23 13:21:59 577
原创 A Surface Defect Detection Method Based on Positive Samples
A Surface Defect Detection Method Based on Positive Samples (一种基于正样本的表面缺陷检测方法)文献来源:https://doi.org/10.1007/978-3-319-97310-4_54 (Zhixuan Zhao)1.论文亮点:(1)本文提出了一种仅基于正样本训练的新型缺陷检测框架(2)建立一个重建网络,该网络可以修复样本中存在的缺陷区域,然后将输入样本与恢复样本进行比较,以指示准确的缺陷区域(3)结合GAN和自动编码器进
2022-01-10 08:52:10 3061 2
原创 Java_方法入门及if语句
Java_方法入门1.方法的定义(1)定义一个方法的格式:public static void 方法名称{ 方法体}(2)方法名称的命名规则和变量一样,使用小驼峰(3)方法体:大括号中可以包含任意多条语句(4)注意事项:方法定义的前后顺序无所谓方法的定义不能产生嵌套包含关系方法定义好之后,需要进行调用才能执行(5)调用方法的格式:方法名称();public class test{ public static void main(String[] args){
2021-12-31 16:42:19 392
原创 Improved autoencoder for unsupervised anomaly detection
Improved autoencoder for unsupervisedanomaly detection (改进的无监督异常检测自动编码器)文章来源: https://doi.org/10.1002/int.22582 (2021.7.26 Zhen Cheng)1.文章亮点:(1)提出了一种新的基于自动编码器的异常检测方法,该方法可以操纵由异常检测相关损失引导的特征空间,以获得更好的性能。可以在保持局部结构的情况下联合执行异常检测和代表性学习(2)建议在特征空间中检测异常,并使
2021-12-31 12:44:59 1921 1
原创 Surface Defect Detection Methods for Industrial Products : A Review
Surface Defect Detection Methods for Industrial Products : A Review文章来源:Appl. Sci.2021,11, 7657. https://doi.org/10.3390/app11167657 (Yuanyuan Ding)论文亮点:本文综述了机器学习方法在工业产品质量检测中的研究现状(1)根据表面特征的使用,从纹理特征、颜色特征和形状特征三个方面总结了传统机器视觉表面缺陷检测方法在工业产品表面缺陷检测中的应用(2)从有监
2021-12-24 21:18:17 2967
原创 Java_运算符
Java_运算符运算符:进行特定操作的符号,比如:+、-表达式:用运算符连起来的式子叫做表达式,比如:34+11. 算数运算符(1)加:+(2)减:-(3)乘:*(4)除(整除):/(5)取模:%(6)注意事项:一旦运算中出现不同的数据类型,那么结果将会是数据类型范围大的那种public class test{ public static void main(String[] args){ //两个常量之间可以进行数学运算 System.out
2021-12-22 17:46:36 406
原创 Java_入门程序
Java_入门程序1.入门程序public class test{ // test一个类的名称,这个单词必须和所在的文件夹名称完全一样,大小写也要一样 public static void main(String[] args){ //代表main方法,表示程序执行的起点 System.out.println("hello,world"); //打印输出 }}2. 关键字(1)特点:完全小写的字母3. 标识符(1)标识符:在程序中,自己定义的内容,比如类的
2021-12-21 21:02:55 900
原创 图像去雾算法综述
图像去雾算法图像去雾算法研究综述 ( 魏红伟 ,田 杰 ,肖卓朋 )基于多幅图像的去雾算法(1)Narasimhan 等通过在相同场景中拍摄多张不同天气条件下图片的方法恢复无雾图像,但需要等待天气变化(2)Schechner 等和 Tali等考虑到天气条件变化,提出基于偏振图像的去雾算法,即在相同场景下拍摄多幅不同偏振图像(3)Kopf 等提出在去雾算法中将场景几何信息作为补充输入信息。缺点:在实际应用场景中,获取这些额外信息并不容易基于图像增强的去雾算法(1)直方图均衡化:将雾图的
2021-11-09 16:46:29 9918
原创 深度学习_卷积神经
深度学习_卷积神经网络参考书籍:深度学习入门_基于python的 理论与实现一. 整体结构全连接:相邻层的所有神经元之间都有连接基于全连接层(Affine层)的网络的例子基于CNN的网络的例子:新增了Convolution层和Pooling层(用灰色的方块表示)二. 卷积层全连接存在的问题:向全连接层输入时,需要将3维数据拉平为1维数据;而卷积层可以保持形状不变。当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。特征图:卷积层的输入
2021-11-08 17:27:29 568
原创 深度学习_与学习相关的技巧
深度学习_与学习相关的技巧参考书籍:深度学习入门_基于python的 理论与实现一. 参数的更新随机梯度下降法(SGD)(1)公式: η表示学习率η表示学习率,式子中的←表示用右边的值更新左边的值(2)代码实现:参数lr表示learning rate(学习率);参数params和grads分别保存了权重参数和它们的梯度(3)缺点:如果函数的形状非均向(anisotropic),比如呈延伸状,搜索的路径就会非常低效。Momentum(动量)(1)公式:η表示学习率。这里新出现了一个
2021-11-08 09:32:39 757
原创 深度学习_误差反向传播法
深度学习_误差反向传播法参考书籍:深度学习入门_基于python的 理论与实现正向传播:从计算图出发点到结束点的传播反向传播:从计算图结束点到出发点的传播局部计算:无论全局发生了什么,都能只根据与自己相关的信息输出接下来的结果计算图优点:可以通过正向传播和反向传播高效地计算各个变量的导数值加法节点的反向传播:加法节点的反向传播将上游的值原封不动地输出到下游加法节点反向传播的具体例子加法层的实现:forward()对应正向传播,backward()对应反向传播
2021-11-05 18:17:33 773
原创 深度学习_神经网络的学习
深度学习_神经网络的学习参考书籍:深度学习入门_基于python的 理论与实现神经网络学习:从训练数据中自动获取最优权重参数的过程学习的目的:以该损失函数为基准,找出能使它的值达到最小的权重参数深 度 学 习 :端 到 端 机 器 学 习(end-to-end machine learning)。这里所说的端到端是指从一端到另一端的意思,也就是从原始数据(输入)中获得目标结果(输出)的意思训练数据:使用训练数据进行学习,寻找最优的参数测试数据(监督数据):使用测试 数据评价训练得到的模型的
2021-11-04 15:56:25 135
原创 深度学习_神经网络
深度学习_神经网络参考书籍:深度学习入门_基于python的 理论与实现1. 激活函数1.1 原理:将输入信号的总和转换为输出信号1.2 图示:1.2 图解:信号的加权总和为节点a,然后节点a被激活函数h()转换成节点y;a表示输入信号的总和,h()表示激活函数,y表示输出;a=b+W1X1+W2X22. sigmoid函数2.1 公式:exp(−x)表示e的 (−x)次方2.2 sigmoid函数的实现import numpy as npimport matplotlib.py
2021-10-30 15:39:37 305
原创 深度学习_感知机
深度学习_感知机参考书籍:深度学习入门_基于python的 理论与实现1. 感知机1.1 原理:接收多个输入信号,输出一个信号1.2 图示:1.3 图解:上图表示一个接收两个输入信号的感知机,x1、x2是输入信号,y是输出信号,w1、w2是权重,图中的O称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w1x1、w2x2)。神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出1。这也称为“神经元被激活”。将这个界限值称为阈值,用符号θ表示。
2021-10-29 21:24:31 264
原创 统计模式识别_综述
统计模式识别_综述参考文献:Statistical Pattern Recognition: A Review要点模式识别的主要目标是有监督或无监督分类。在传统模式识别的各种框架中,统计方法得到了最深入的研究和实践应用。近年来,从统计学习理论中引入的神经网络技术和方法越来越受到人们的重视。识别系统的设计需要仔细关注以下问题:模式类的定义、感知环境、模式表示、特征提取和选择、聚类分析、分类器设计和学习、训练和测试样本的选择以及性能评估。介绍模式识别是研究机器如何观察环境,学会从背景中区分感兴趣
2021-10-20 21:02:03 1533
原创 关于pandas
关于pandas一、pandas介绍pandas:开源的数据挖掘库;用于数据探索;封装了matplotlib,numpy创建Dataframe:pd.Dateframe(ndarray)创建日期:pd.data_range(start,end,periods,freq)start --开始日期end --结束日期periods --时间跨度freq --统计时间方式4.实例5.DataFrame介绍(1)对象.shape --形状(2)对象.index --行索引
2021-10-20 21:00:37 83
原创 机器学习_线性回归
机器学习_线性回归训练集:用来训练,构建模型验证集:用来在模型训练阶段测试模型的好坏测试集:等模型训练好之后,再用测试集来评估模型的好坏回归:预测数据为连续性数值分类:预测数据为类别型数据,并且类别已知聚类:预测数据为类别型数据,但是类别未知1、一元线性回归回归分析:用来建立方程模拟两个或者多个变量之间如何关联自变量:被用来进行预测的变量(输入)因变量:被预测的变量(输出)一元线性回归:包含一个自变量一个因变量多元回归分析:包含两个以上的自变量表达式:hθ(x)=θ0+θ1x
2021-10-20 20:59:18 423
原创 数字图像处理与分析_图像增强
图像增强参考文献《数字图像处理与分析》 龚声蓉等1.空域增强:增强构成图像的像素1.1 灰度变换增强1.1.1 线性灰度变换线性灰度变换(线性拉伸):将原始图像中的灰度值不加区别的扩展。假定原始输入图像的灰度取值范围为[fmin,fmax],输出图像的灰度取值范围为[gmin,gmax]。1.1.2 分段线性灰度变换分段线性灰度变换:对不同范围的灰度值进行不同的拉伸处理。优点:可以根据用户的需要,拉伸特征物体的灰度细节,相对抑制不感兴趣的灰度级。1.1.3 非线性灰度变换非线
2021-10-20 20:57:10 1885
原创 Fast和ORB算法
Fast和ORB算法1.Fast算法1.1 原理:取图像中的检测点,以该点为圆心的周围邻域内像素点判断检测点是否为角点;通俗理解为 :若一个像素周围有一定数量的像素与该点像素值不同,则认为其为角点1.2 基本流程缺点:(1)获得的候选点比较多(2)特征点的选取不是最优的,因为它的效果取决于要解决的问题和角点的分布情况(3)进行非特征点判别时大量的点被丢弃(4)检测到的很多特征点都是相邻的1.3 实现语法:(1)fast=cv.FastFeatureDetector_create(th
2021-10-20 20:01:04 528
原创 模板匹配与霍夫变换
模板匹配与霍夫变换1. 模板匹配1.1 原理:在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,以滑窗的思路不断的移动模板图片1.2 OpenCV方法语法:res=cv.matchTemplate(img,template,method)参数:(1)img:要进行模板匹配的图像(2)template:模板(3)method:实现模板匹配的算法,主要包含:(3.1)平方差匹配(CV_TM_SQDIFF):利用模板与图像之间的平方差进行匹配,最好匹配是0,匹配越差,匹配的值越大
2021-10-15 17:01:31 357
原创 OpenCV图像处理_边缘检测
OpenCV图像处理_边缘检测1. 边缘检测1.1 主要思想:标识数字图像中亮度变化明显的点;大幅度减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。1.2 边缘检测分类(1)基于搜索:通过寻找图像一阶导数中的最大值来检测边界,然后利用计算结果估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值,代表算法是Sobel算子和Scharr算子(2)基于零穿越:通过寻找图像的二阶导数零穿越来寻找边界,代表算法是Laplacian算子2 .Sobel算子:基于
2021-10-14 15:07:29 626
原创 OpenCV图像处理_直方图
OpenCV图像处理_直方图1.直方图1.1 直方图的术语和细节:(1)dims:需要统计的特征数目(2)bins:每个特征空间子区段的数目(3)range:要统计特征的取值范围1.2 直方图的意义:(1)直方图是图像中像素强度分布的图形表达方式(2)它统计了每一个强度值所具有的像素个数(3)不同的图像的直方图可能是相同的1.3 直方图的计算和绘制语法:cv.calcHist(image,channels,mask,histSize,range[,hist[,accumulate]])
2021-10-14 09:39:04 218
原创 OpenCV图像处理_图像平滑
OpenCV图像处理_图像平滑1. 图像噪声:由于图像采集、处理、传输过程中不可避免的受到噪声的污染,妨碍人们对图像的理解及分析1.1 椒盐噪声(脉冲噪声): 随机出现的白点或黑点1.2 高斯噪声:服从于高斯分布的一种噪声高斯密度函数:2. 图像平滑简介图像平滑:去除高频信息(噪声),保留低频信息;采用低通滤波2.1 均值滤波均值滤波:由一个归一化的卷积框完成的,用卷积框覆盖区域所有像素的平均值来代替中心元素优点:算法简单,计算速度快缺点:在去噪声的同时去除了很多细节部分,将图像变
2021-10-13 17:29:41 227
原创 OpenCV图像处理_形态学操作
OpenCV图像处理_形态学操作1.腐蚀与膨胀1.1 腐蚀:消除物体边界点,使目标缩小,可以消除小于结构元素的噪声点语法:cv.erode(img,kernel,iterations)参数:(1)img:要处理的图像(2)kernel:核结构(3)iterations:腐蚀的次数,默认是11.2 膨胀:将与物体接触的所有背景 点合并到物体中,使目标增大,可添补目标中的空洞语法:cv.dilate(img,kernel,iterations)参数:(1)img:要处理的图像(2)ker
2021-10-13 16:09:13 227
原创 基于脑风暴优化的数据分类特征选择
基于脑风暴优化的数据分类特征选择Feature selection based on brain storm optimization for dataclassification要点:将作为增量学习神经网络的模糊ARTMAP(FAM)模型与作为特征选择方法的BSO相结合,生成用于特征选择和优化的混合FAM-BSO模型。首先,使用FAM增量创建多个原型节点,将其作为底层模型学习训练样本,然后,BSO用于搜索和选择能够以最少的特征数量产生高精度的最佳特征子集。主要贡献:(1)一种混合FAM-B
2021-10-11 10:09:34 170
原创 基于二元脑风暴优化的特征选择
基于二元脑风暴优化的特征选择参考文献:Feature selection through binary brain storm optimization要点本文介绍了一种用于特征选择的脑风暴优化(即二进制脑风暴优化),其中实值解使用不同的传递函数映射到布尔超立方体上。在不同的场景下对所提出的二元脑风暴优化进行了评估,并将其结果与一些最先进的技术进行了比较。它的整体性能表现出与其他技术相当的结果,因此显示出它是解决特征选择问题的一个有前途的工具。...
2021-10-08 20:22:04 163
原创 OpenCV图像处理
OpenCV图像处理一. 几何变换图像的缩放语法:cv.resize(src,dsize,fx,fy,interpolation)参数:(1)src:输入图像(2)dsize:绝对尺寸,直接指定调整后图像的大小(3)fx,fy:相对尺寸,将dsize设置为None,然后将fx,fy设置为比例因子即可(4)interpolation:插值方法cv2.INTER_LINEAR:双线性插值法cv2.INTER_NEARESR:最近邻插值cv2.INTER_AREA:像素区域重采样(默认)
2021-09-29 16:28:01 1253
原创 OpenCV基本操作
图像处理基础1.图像(1)图:物体反射或透射光的分布。(2)像:人的视觉系统所接受的图在人脑中所形成的印象或认识·····2.模拟图像和数字图像(1)模拟图像(连续存储的数据):通过某种物理量(光,电子等)的强弱变化来记录图像亮度信息,是连续变化的,容易受到干扰。(2)数字图像(分级存储的数据):用0/1来记录信息,包含0~255灰度;0表示最黑,255表示最白。3.图像的分类(1)二值图像:二维矩阵仅由0、1构成,0表示黑色,1表示白色。通常用于文字、线条图的扫描识别(OCR)和掩膜图像的
2021-09-29 11:11:27 2142
原创 关于Numpy
Numpy1.Numpy:开源的Python科学计算库,用于快速处理任意维度的数组2.Numpy:用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。
2021-09-17 16:59:41 216
原创 Python_模块和包
Python_模块和包1.模块模块:是一个Python文件,以.py结尾,包含了Python对象定义和Python语句;模块能定义函数,类和变量,模块里也能包含可执行的代码2.导入模块2.1 import 模块名语法:import mathprint(math.sqrt(9)) #3.02.2 from 模块名 import 功能语法:from math import sqrtprint(sqrt(9)) #3.02.3 from 模块名 import语法:fr
2021-09-09 11:20:16 187 1
原创 Python_异常
Python_异常1.异常的写法:(1)语法:(2)体验# 需求:尝试打开test.txt文件,如果文件不存在,用只写方式打开try: f=open('test.txt','r')except: f=open('test.txt','w')2.捕获指定异常2.1 语法:注意:(1)如果尝试执行的代码异常类型和要捕获的异常类型不一致,则无法捕获异常(2)一般try下方只放一行尝试执行的代码try: print(num)except NameError:
2021-08-22 08:59:18 227
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人