时间限制: 1 Sec 内存限制: 128 MB
提交: 48 解决: 25
[状态] [提交] [命题人:admin]
题目描述
设有n个活动的集合E={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fifi,且si<fi。如果选择了活动i,则它在半开时间区间[si,fi)内占用资源。若区间[si,fi)与区间[sj,fj)不相交,则称活动i与活动j是相容的。也就是说,当si≥fj或sj≥fi时,活动i与活动j相容。选择出由相互兼容的活动组成的最大集合。
输入
第1行一个整数n(n≤1000),接下来n行,每行两个整数si和fi。
输出
输出尽可能多的互相兼容的活动个数。
样例输入 Copy
4 1 3 4 6 2 5 1 7
样例输出 Copy
2
来源/分类
===========================上面是题目,下面是干货===========================
#include <bits/stdc++.h>
using namespace std;
struct meet{
int start,endd;
};
meet me[10000];
bool cmp(meet a,meet b){
if(a.endd==b.endd)
return a.start<b.start;
return a.endd<b.endd;
}
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++)
cin>>me[i].start>>me[i].endd;
sort(me+1,me+1+n,cmp);
int last=0;
int sum=0;
for(int i=1;i<=n;i++){
if(me[i].start>=last){
sum++;
last=me[i].endd;
}
}
cout<<sum;
return 0;
}