目标检测的评价指标

本文深入探讨了目标检测中的关键评价指标——Intersection-over-Union (IoU),解释了IoU的计算原理,即检测结果与Ground Truth交集与并集的比率,并通过实例和图形进行了清晰阐述。文章还提供了IoU的Python实现,帮助读者更好地理解和应用IoU。
摘要由CSDN通过智能技术生成

 

 

本文通过实例介绍目标检测的评价指标,参考的网页有以下:

https://blog.csdn.net/eddy_zheng/article/details/52126641

https://blog.csdn.net/lanchunhui/article/details/71190055

1. intersection-over-union ( IOU )交除并

在目标检测的评价体系中,有一个参数叫做 IoU ,简单来讲就是模型产生的目标窗口和原来标记窗口的交叠率。具体我们可以简单的理解为: 即检测结果(DetectionResult)Ground Truth 的交集比上它们的并集,即为检测的准确率 IoU :

                                                                                I 
如下图所示:GT = GroundTruth; D

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值