Elasticsearch

本文介绍了搜索引擎Elasticsearch与数据库的对比,详细讲解了Elasticsearch在数据存储、性能、分词搜索等方面的优点。文章还涵盖了Elasticsearch的安装、Kibana的使用,以及字段数据类型、索引和文档操作等基础知识,是学习Elasticsearch的一个实用教程。
摘要由CSDN通过智能技术生成

目录

1.搜索是什么

1.1.概念

1.2.场景

1.2.1.互联网搜索

1.2.2. 站内搜索(垂直搜索)

2.数据库的弊端

2.1.站内搜索(垂直搜索):数量小,简单搜索,可以使用数据库、 

2.1.1存储问题。

2.1.2.性能问题

2.1.3.不能分词

2.2.互联网搜索

3.常见的搜索引擎

3.1.ElasticSearch与Solr比较

3.1.1.当单纯的对已有数据进行搜索时,Solr更快

3.1.2.当实时建立索引时,Solr会产生io阻塞,查询性能较差,ElasticSearch具有明显的优势

3.1.3.随着数据量的增加,Solr的搜索效率会变得更低,而ElasticSearch 却没有明显的变化

3.1.4.总结

4.Elasticsearch的概念

5.Elasticsearch的使用场景

5.1.国外

5.2.国内

6.安装Elasticsearch

6.1.查看一下jdk的版本是否是1.8.0

6.2.下载和解压缩Elasticsearch安装包

6.3.Elasticsearch目录结构

6.4.启动Elasticsearch

6.5.访问Elasticsearch

7.什么是Kibana

8.安装Kibana

8.1.下载并解压Kibana

8.2.启动Kibana

8.3.访问Kibana

9.ES中常见的概念

10.ES常用API 接口

11.字段数据类型

11.1.字符串类型

11.1.1.text

11.1.2.keyword

11.2.数值类型

11.2.1.long

11.2.2.Interger

11.2.3.short

11.2.4.byte

11.2.5.double

11.2.6.float

11.2.7.half float

11.2.8.scaled float

11.3.日期类型

11.3.1.date

11.4.te布尔类型

11.4.1.boolean

11.5.二进制类型

11.5.1.binary

12.对于索引的基本操作

12.1.创建索引

12.1.1.创建索引并往索引中添加一条文档

12.1.2.创建索引---但是不添加数据

12.2. 查询索引

12.3.删除索引

12.4.查询索引的结构

13. 对于文档的基本操作

13.1.添加文档

13.1.1.添加指定id的文档

13.1.2.添加随机的文档

 13.2.根据id查询文档

13.3.根据id删除文档

13.4.修改文档

13.4.1.修改所有的列

13.4.2.修改部分列

13.5.根据其他条件查询

13.5.1.查询所有的文档

13.5.2.根据条件查询

13.5.3.将查询的条件封装成json数据

13.5.4.查询部分列

13.5.6.分页查询

13.5.7.范围查找

13.5.8.排序查询

 13.6.多条件查询(bool)

13.6.1.且

13.6.2.或

13. 6.3.取反(不等)

13.6.4. filter --过滤

14.高亮显示

15.Text和Keyword类型的区别


1.搜索是什么

1.1.概念

用户输入想要的关键词,返回含有该关键词的所有信息。

1.2.场景

1.2.1.互联网搜索

谷歌、百度、各种新闻首页

1.2.2. 站内搜索(垂直搜索)

企业 OA 查询订单、人员、部门,电商网站内 部搜索商品(淘宝、京东)场景

2.数据库的弊端

2.1.站内搜索(垂直搜索):数量小,简单搜索,可以使用数据库、 

2.1.1存储问题。

电商网站商品上亿条时,涉及到单表数据过大必须拆分表,数据库磁盘占用过大必须分库(mycat)。

2.1.2.性能问题

解决上面问题后,查询笔记本电脑等关键词时,上亿条数据 的商品名字段逐行扫描,性能跟不上。 

2.1.3.不能分词

如搜索笔记本电脑,只能搜索完全和关键词一样的数据,那么数据量小时,搜索笔记电脑电脑数据要不要给用户

2.2.互联网搜索

肯定不会使用数据库搜索,数据量太大,pb级别,我们可以使用搜索引擎来解决数据库搜索的问题:  搜索也是一款数据库,搜索可以进行分词搜索---搜索速度非常快

3.常见的搜索引擎

    ElasticSearch Solr

3.1.ElasticSearch与Solr比较

3.1.1.当单纯的对已有数据进行搜索时,Solr更快

3.1.2.当实时建立索引时,Solr会产生io阻塞,查询性能较差,ElasticSearch具有明显的优势

3.1.3.随着数据量的增加,Solr的搜索效率会变得更低,而ElasticSearch 却没有明显的变化

3.1.4.总结

1.es基本是开箱即用(解压就可以用!)【南京】 ,非常简单。Solr 安装略微复杂一丢丢!

2.Solr 利用Zookeeper进行分布式管理,而Elasticsearch<mark>自身带有分布式协调管理功能</mark>

3.Solr 支持更多格式的数据,比如JSON、XML、 CSV ,而Elasticsearch仅支持json文件格式

4.Solr 官方提供的功能更多,而Elasticsearch本身更注重于核心 功能,高级功能多有第三方插件提供,例如图形化界面需要kibana友好支撑

5.Solr查询快,但更新索引时慢(即插入删除慢),用于电商等查询多的应用ES建立索引快(即查询慢) ,即实时性查询快,用于facebook新浪等搜索Solr是传统搜索应用的有力解决方案,但Elasticsearch更适用于新兴的实时搜索应用

6.Solr比较成熟,有一个更大,更成熟的用户、开发和贡献者社区,而Elasticsearch相对开发维护者较少,更新太快,学习使用成本较高

4.Elasticsearch的概念

The Elastic Stack, 包括 Elasticsearch【搜索,分析】、 Kibana【可视 化】、 Beats Logstash【数据的搜集】(也称为 ELK Stack)能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索,分析和可视化.Elaticsearch,简称为 ES ES 是一个开源的高扩展的分布式全文搜索引,是整个 ElasticStack 技术栈的核心.它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理 PB 级别的数据。

5.Elasticsearch的使用场景

5.1.国外

维基百科,类似百度百科,网络七层协议的维基百科,全文检索,高亮,搜索推荐

Stack Overflflow(国外的程序讨论论坛),相当于程序员的贴吧.遇到it问题去上面发帖,热心网友下面回帖解答。

GitHub(开源代码管理),搜索上千亿行代码.电商网站,检索商品日志数据分析,logstash采集日志,ES进行复杂的数据分析(ELK术,elasticsearch+logstash+kibana

商品价格监控网站,用户设定某商品的价格阈值,当低于该阈值的时候,发送通知消息给用户,比如说订阅《java编程思想》的监控,如果价格低于27块钱,就通知我,我就去买。

BI系统,商业智能(Business Intelligence)。大型连锁超市,分析全国网点传回的数据,分析各个商品在什么季节的销售量最好、利润最高。成本管理,店面租金、员工工资、负债等信息进行分析。从而部署下一个阶段的战略目标。

5.2.国内

百度搜索,第一次查询,使用es

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值