有一个整数数组,请求出两两之差绝对值最小的值,记住,只要得出最小值即可,不需要求出是哪两个数。

本文探讨了求解整数数组中两两之差绝对值最小值的多种算法方案,包括暴力法、排序法、子段和改进法及桶排序法,并分析了各自的时间与空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题同上:

有一个整数数组,请求出两两之差绝对值最小的值,记住,只要得出最小值即可,不需要求出是哪两个数。

 

方法《1》:暴力的方式。遍历所有的两个数的差,记录最小值。算法的复杂度O(n2)

 

方法《2》:两个数要想差的绝对值最小,肯定是需要两个数大小相近。故有思路:先对数组进行排序,然后遍历一遍,相邻的数相减,记录绝对值最小的数。

 

方法《3》:将现在的问题进行转化:

设这个整数数组是a1,a2,...,an
构造数组B=(b1,b2,...,bn-1)
b1 = a1-a2,
b2 = a2-a3,
b3 = a3-a4,
...
bn-1 = an-1 - an

那么原数组中,任意两整数之差ai-aj(1<=i,j<=n)可以表示成
B中第i个到第j-1个元素的连续求和

例如b2+b3+b4 = (a2-a3) + (a3-a4) + (a4-a5) = a2-a5

O(n)构造出B序列后

用类似“最大子段和”算法求“最小绝对值子段和”

(但是这种方法是有问题的,但是转化的思路很好)

方法4:遍历一遍数据,找出最大值Max和最小值Min,然后把整个数据进行划分,step=(Max-Min)/n.然后遍历这n个桶,相邻元素的最大值一定是某个桶i中的最大值和桶(i+1)中的最小值的差值。具体如何证明可以自己想想一下。

(

假如这个相邻元素的最大间距不是某个桶i中的最大值和桶(i+1)中的最小值的差值,即最大间距的两个元素位于同一个桶中,即最大间距小于step,所以Min+n*step<Maxd的。因此矛盾。所以最大元素肯定是位于不同桶中的。

)

整个算法时间复杂度为O(n),空间复杂度也是O(n)
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值