求数组中两两之差绝对值最小的值

一、问题描述

       有一个整数数组,请求出两两之差绝对值最小的值,记住,只要得出最小值即可,不需要求出是哪两个数。(下述的所有解法中,依旧没有实现在O(n)时间内求解的,如果有好方法,求赐教!!!)

二、解题思路

       方法一:暴力做差,求最小值。时间复杂度O(n^2)。

       方法二:排序做差,求相邻最小值。时间复杂度O(nlgn)。

       方法三:设这个整数数组是a1,a2,...,an,构造数组B=(b1,b2,...,bn-1),b1 = a1-a2,b2 = a2-a3,b3 = a3-a4,...,bn-1 = an-1 - an。那么原数组中,任意两整数之差 ai - aj(1<=i,j<=n)可以表示成 B 中第i个到第j-1个元素的连续求和,例如b2+b3+b4 = (a2-a3) + (a3-a4) + (a4-a5) = a2 - a5,O(n)构造出B序列后,用类似“最大子段和”算法求“最小绝对值子段和”(不是最简洁)。

方法一实现:不赘述

方法二实现:

       

方法三实现:

       1)构造数组B=(b1,b2,...,bn-1)。

       

       2)通过动态规划实现求和绝对值最小。但是时间复杂度很高。备用数组array_c在b数组的基础上,以当前值为核心,累计往前加和,再求绝对值最小的那个。

       

三、注意事项

       1.无。

四、代码实现

       见我的github:求数组中两两之差绝对值最小的值

       参考博客:微软面试题

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页