Tooth and Alveolar Bone Segmentation From Dental Computed Tomography Images基于计算机断层扫描图像的牙齿和牙槽骨分割

论文翻译

摘要

计算机辅助正畸治疗计划和模拟需要牙槽骨复合体的三维模型。从计算机断层扫描(CT)图像中分割牙齿和牙槽骨是重建其模型的基本步骤。由于牙槽骨在常规正畸治疗中的应用较少,可能会产生不良的副作用,以往的研究主要集中在牙齿的分割和重建上,没有考虑到牙槽骨。在这项研究中,我们提出了一种从牙齿CT图像中实现牙齿和牙槽骨分割的方法,用于重建牙齿和牙槽骨的三维模型。该方法首先利用全局凸水平集模型从CT图像中提取牙齿和牙槽骨的连通区域;然后,基于Radon变换和局部水平集模型将单个牙齿和牙槽骨从连通区域中分离出来;实验结果表明,该方法可以成功地完成CT图像中牙齿和牙槽骨的分割,在精度上优于现有的牙齿分割方法。这表明该方法可用于重建牙槽骨复合体的三维模型以进行精确治疗。

检索术语:计算机断层扫描图像,图像分割,水平集,正畸学,牙齿和牙槽骨。

1 介绍

在传统的正畸治疗中,正畸医生主要依靠物理铸型模型进行诊断和治疗计划。随着牙科计算机断层扫描(CT)图像在临床中的应用越来越多,重建牙齿和牙槽骨的全三维(3D)数字模型以进行计算机辅助诊断和治疗成为可能。从CT图像中分割牙齿和牙槽骨是重建其三维模型的基本步骤。

由于牙齿与牙槽骨强度相近,相邻牙齿位置相近,且牙齿与牙槽骨的拓扑结构复杂,因此对其CT图像进行分割是一项挑战。目前已有几种自动或半自动的方法[1]-[13]从牙科CT图像中分割牙齿,其中一些方法取得了较好的分割精度。这些方法可以分为两类:直接三维分割和二维逐片分割直接三维分割方法直接在三维体积空间中分割牙齿体积。Akhoondali等[1]开发了一种基于区域生长的自动分割方法。Keyhaninejad等[2]和Hosntalab等[3]提出使用基于三维区域的水平集模型提取牙齿体积。Keustermans等[4]和Hiew等[5]采用图切算法交互式分割三维牙体。Barone等人[6]开发了一种新的框架,利用一组投影图像勾勒出的目标牙齿的二维轮廓,交互式地对单根牙齿的三维形状进行建模。Pei等[7]提出了一种基于三维样本的随机游走方法,该方法结合了半监督标签传播和三维样本配准的正则化,从锥束CT (cone-beam CT, CBCT)图像中分割牙齿体积。二维逐片分割方法在横平面的每个二维切片上分割牙齿轮廓。这类方法一般采用齿廓传播策略自动初始化相邻切片的齿廓,用户只需手动初始化起始切片即可。Heo and Chae[8]和Wu等[9]使用b样条蛇结合遗传算法提取牙齿轮廓。在他们的方法中使用的b样条蛇不能解决臼齿轮廓的拓扑变化。水平集方法由于在处理拓扑变化和轮廓传播方面的优势,在二维牙齿分割中得到了广泛的应用[10]-[13]。Gao和Chae[10]提出了形状和强度优先于分割牙齿轮廓的水平集模型,实现了较高的分割精度。Yau等[11]采用相同的模型提取根轮廓。Ji等[12]对该模型进行了改进,对前牙进行了分割。Gan等[13]开发了一种用于准确根分割的混合水平集模型。

需要注意的是,由于传统正畸治疗中对牙槽骨的应用较少,这些方法都侧重于单个牙齿的分割,而没有考虑到牙槽骨的分割。Wang等[14],[15]开发了从CT图像中分割牙齿和骨组织的有前途的方法。然而,他们的方法不涉及牙槽骨的牙齿分割,因此不能应用于牙齿和牙槽骨的单独三维模型重建。

在治疗计划中,牙槽骨的三维模型为牙根可能的位置和方向提供了参考,对牙根的排列很有必要。如果只使用牙齿模型进行治疗计划,计划好的牙根可能没有被牙槽骨包围,在正畸治疗后出现牙齿脱落的风险。另外,正畸治疗的牙齿运动是在正畸力作用下通过牙槽骨组织的建模和重塑来实现的,牙齿生物力学涉及牙齿、牙周韧带和牙槽骨[16]。因此,在牙齿生物力学模拟中,牙槽骨的三维模型也是必不可少的。

在这项研究中,我们提出了一种基于水平集的方法,从CT图像中逐片分割牙齿和牙槽骨轮廓。本研究的贡献主要包括以下三点。(1)该方法实现了单个牙齿和牙槽骨的分割。它首先从CT图像中分割出骨组织(包括牙齿和牙槽骨),然后从骨组织中分割出单个牙齿轮廓,分离出牙齿和牙槽骨。骨组织分割不仅使牙齿和牙槽骨的分割成为可能,而且有利于单个牙齿的分割。(2)建立边缘检测能量与齿形先验相结合的局部水平集模型,从骨组织区域分割齿形。

在边缘检测能量中,将强度信息集成到边缘指示器中,以更准确地提取牙齿轮廓。(3)为了减小逐片分割方法的累积误差,提出了一种基于相邻片齿形变形趋势的初始齿形计算策略。实验结果表明,该方法在牙槽骨分割和牙槽骨分割方面均取得了良好的效果,在分割精度上优于现有的牙槽骨分割方法。

2 方法

2.1 方法的动机和概述

近年来,水平集方法越来越多地应用于医学图像分割[17]-[19]。使用多相水平集模型可以同时从CT图像中分割单个牙齿和牙槽骨[20]。然而,由于牙根部分的图像条件复杂,每颗牙齿需要使用单独的水平集进行分割[10]。因此,采用多阶段水平集策略,最多需要17个耦合水平集(牙齿16个,牙槽骨1个),复杂且效率低。

可以参考这里水平集应用到医学图像分割的方法:
[17] S. Tang, Y. Guo, Y. Wang, W. Cao, and F. Sun, “Adaptive cosegmentation
of pheochromocytomas in CECT images using localized level set models,”
IEEE J. Biomed. Health Inf., vol. 20, no. 2, pp. 549–562, Mar. 2016.
[18] J. J. Pang, J. B. Driban, T. E. McAlindon, J. G. Tamez-Pe˜na, J. Fripp,
and E. L. Miller, “On the use of coupled shape priors for segmentation
of magnetic resonance images of the knee,” IEEE J. Biomed. Health Inf.,
vol. 19, no. 3, pp. 1153–1167, May 2015.
[19] X. Qin, X. Li, Y. Liu, H. Lu, and P. Yan, “Adaptive shape prior constrained
level sets for bladder MR image segmentation,” IEEE J. Biomed. Health
Inf., vol. 18, no. 5, pp. 1707–1716, Sep. 2014.
[20] L. A. Vese and T. F. Chan, “A multiphase level set framework for image
segmentation using the Mumford and Shah model,” Int. J. Comput. Vis.,
vol. 50, no. 3, pp. 271–293, Dec. 2002.

在这里插入图片描述
Fig1 提出了一种两步法从CT图像中分割牙齿和牙槽骨的方法。(a)第一步分割:骨组织分割。(b)第二步分割:牙槽骨分离。

本研究发展了一种两步分割牙齿和牙槽骨的方法,而不是使用多阶段水平集。两步法的流程如图1所示。首先,使用全局凸水平集模型对骨组织进行分割。分节骨组织中体积最大的区域是牙槽骨与牙槽骨的连接区域。然后将连接的区域分割成独立的牙齿和牙槽骨。该步骤以牙槽骨为前景,利用Radon变换和局部水平集模型对牙槽骨进行逐片分割。采用前三片分割的齿形传播策略作为当前片的齿形先验,自动初始化水平集曲线。

2.2 骨组织分割的全局凸水平集模型

本研究采用局部二值拟合(local binary fitting, LBF)模型[21]提取骨组织,该模型在存在强度不均匀的情况下,在弱边缘提取方面取得了很好的效果。设在这里插入图片描述为图像平面,I: Ω→↑为给定的灰度图像φ:在这里插入图片描述为二维水平集函数,则LBF模型的能量函数定义为
在这里插入图片描述
其中,表示像平面上的一个点,μ是一个正权,Kσ是一个带尺度参数σ的高斯核,fi(x)是零水平集内外的局部平均强度,δε是归一化狄拉克函数[22],M1 (φ)= Hε (φ), M2 (φ)=1−Hε (φ),其中Hε是归一化Heaviside函数[22]。

能量函数(1)相对于φ的最小值可以通过求解梯度下降流方程来实现:
在这里插入图片描述
式中 t ≥ 0 为人工迭代时间,div(·)为散度算子,每次迭代前计算局部平均强度f1和f2,公式如下:
在这里插入图片描述
需要注意的是,由于能量函数(1)是非凸的,可能会向局部极小值收敛,所以LBF模型对初始条件比较敏感。此外,使用梯度体面方案求解能量函数的最小化过程会耗费大量时间。为了解决这两个问题,采用Chan等[23]提出的全局凸分割方法,得到LBF模型的全局凸版本为:
在这里插入图片描述
其中在这里插入图片描述,g是一个边缘指示器,定义为在这里插入图片描述

其中Gs * I(x)表示I与高斯核Gs卷积得到的平滑图像,▽表示微分算子。

设ΩC表示水平集曲线内的区域,可以推导出,如果u(x)是(5)对于几乎所有α[0,1]的最小值,则ΩC = {x: u(x)≥α}将是(1)的全局最小值。为了确定(1)的全局最小值,可以求解(5)的最小化,然后令ΩC = {x: u(x)≥α}对于任何α[0,1]。

凸约束最小化问题(5)具有唯一的最小值,可通过各种最小化技术求解。在本研究中,我们使用Split Bregman方法[24]来求解。该方法不直接求解约束最小化问题,而是引入一个辅助向量和一个Bregman向量,然后求解一系列无约束问题。关于Split Bregman方法实现的更多细节可以在文献[24]中找到。

2.3 单个牙齿和牙槽骨分割

由于一些原因,从牙槽骨中分离单个牙齿是一个很大的挑战。(1)牙齿具有灵活的拓扑结构,在牙根和牙冠部分都可以分裂成不同的分支。(2)邻近的牙齿在冠部可能相互接触。(3)牙根与牙槽骨相互连接,CT图像强度相近。在该方法中,齿的不同分支在第一步分割后自然分裂。另外两个困难处理如下。(1)考虑到牙冠部分中远侧的牙齿结构是凸的,相邻牙冠可以用一个平面进行分离,采用Radon变换计算一条线,在每个切片上进行相邻牙的分离。(2)提出了一种结合边缘检测能量和齿形先验的局部水平集模型,从牙槽骨中分割出齿形。

在实现中,单个牙齿被半自动地从牙槽骨切片中分割出来。首先,从牙冠部分手动选择起始切片,在起始切片中绘制每个牙齿的种子点,用于有效牙齿区域的检测[13]。然后,基于牙齿轮廓传播策略,对所有图像沿牙冠或牙根方向进行自动切片分割;该传播策略在自动初始化齿形之前,使用前三片分割的齿形作为齿形。对于每个切片分割,首先提取一条线,使用Radon变换将相邻的牙齿分离成独立的牙齿。然后,使用局部水平集模型从直线对应边的区域分割出每个牙齿。

2.3.1 齿形传播策略

采用自然传播策略,将前一切片的分割轮廓作为当前待分割切片的齿形先验[10],但累积误差严重。为了减少累积误差,Wu等[25]使用前三个分割切片的平均形状作为形状先验。结果表明,平均策略可以有效地减少累积误差,但计算出的齿形先验可能不准确。本研究利用齿形的收缩或膨胀变形趋势来预先计算齿形。
在这里插入图片描述
三维空间中牙齿轮廓的结构。

牙齿解剖结构(如图2所示)表明,在一定方向上,特别是在舌、颊方向上,牙齿轮廓从牙颈部分向牙根或牙冠部分移动时,有收缩或扩张的变形倾向。本研究利用变形趋势对前一切片的分割是否出现错误进行像素智能检测。如果不存在分割误差,则直接使用前一切片的分割轮廓作为先验齿形。否则,将通过平均前三个切片的分割轮廓来计算先验齿形。

设φi−1、φi−2、φi−3分别为前三片分割后的牙齿轮廓的水平集函数。对于给定点x,当(φi−2(x) − φi−1(x))(φi−3(x) − φi−2(x))≥0时,该点附近的齿形有收缩或扩张变形趋势;否则,没有收缩或膨胀的变形趋势,可能会出现分割错误。本研究应用以下表达式来计算齿形先验(嵌入在二进制掩模中)
在这里插入图片描述
式中,φ12 = φi−2 − φi−1,φ23 = φi−3 − φi−2,B(x)为阈值为0的阈值算子。
在这里插入图片描述
图3所示。不同策略下齿形先验计算结果比较。(a)前三片分割的牙齿轮廓,红、绿、蓝曲线分别表示第(i-1)、(i-2)、(i-3)片的轮廓。(b)使用不同策略计算的形状先验,红色、白色和黄色曲线分别表示Gao等[8]、Wu等[25]和所提出策略的结果。©手工分割当前切片的参考齿廓

图3显示了使用不同策略获得的形状先验的比较。图3(a)为前三片分割后的牙齿轮廓,分别用红、绿、蓝曲线表示。可以看出,红色曲线出现了边界泄漏误差。图3(b)为使用不同策略计算得到的形状先验,其中红色、白色、黄色曲线分别代表Gao等[10]、Wu等[25]和本文策略得到的结果。图3©为人工分割后的真实牙齿轮廓。这些结果如图3所示,验证了Gao等人的策略会将边界泄漏误差传播到初始水平集,Wu等人的策略可以在不准确的齿形先验条件下消除误差,而本文提出的策略可以获得与人工分割轮廓更接近的齿形。

2.3.2 邻齿分离的Radon变换

相邻的牙齿可能会相互接触,导致失去共同的边界。为了获得单个牙齿轮廓,本研究采用Radon变换提取一条线,将相邻牙齿分离为独立的牙齿[26]。然后,可以使用单个水平集从线的相应侧单独分割每个牙齿。

Radon变换是啥?

给定图像I(x1, x2) (x1, x2∈在这里插入图片描述)的Radon变换表示图像强度在各个方向上的一维线积分(即投影)的集合:
在这里插入图片描述
其中θ表示线积分的垂直方向与x1轴之间的夹角,ρ表示线积分的垂直偏移量。

假设相邻牙齿可以用直线分开,则相邻牙齿的分隔线对应于Radon变换中的局部最小点R(θ0, ρ0),即分隔线处的图像投影达到最小值。因此,分离线提取相当于在Radon变换中搜索约束局部最小值。利用相邻齿的形状先验为分离线的位置和方向提供约束。

2.3.3 牙齿轮廓分割的局部水平集模型

本研究将牙形先验信息整合到测地线活动轮廓模型[27]中,构建了从牙槽骨开始的牙轮廓分割局部水平集模型,其能量函数为
在这里插入图片描述
其中,β为正权值,φ0表示由(7)从先前分段的切片中预先计算出的齿形的带符号距离函数。第一项是来自测地线活动轮廓的边缘项[27]。本研究基于牙齿图像强度相对高于牙槽骨图像强度的认识,将强度信息融入到边缘指标中,使边缘指标驱动水平集曲线进化,并在图像梯度大、强度高的边界处停止,防止水平集曲线侵入牙槽骨。第二项是齿形先验项,定义为两种形状[28]的不相似性,由它们的嵌入水平集函数表示,以防止水平集曲线演化得离初始轮廓太远。该定义的一个优点是,结果主要取决于嵌入的水平集函数的符号,而不需要将水平集函数约束为带符号的距离函数。

常用的边缘指示器(6)会在图像梯度最大的边界处停止水平集曲线的演化。然而,在牙科CT图像中,真实的牙齿边界并不总是位于图像梯度最大的位置。由于牙齿区域相对于周围牙槽骨具有较高的强度,本研究将强度信息纳入边缘指标,使边缘指标在图像梯度大、强度高的边界处停止水平集曲线的演化。此外,如文献[9]、[10]所述,梯度方向检测有助于引导水平集曲线向真实牙齿边界演化。因此,本研究定义了以下基于强度信息和梯度方向检测的精细边缘指标
在这里插入图片描述
其中IN表示归一化图像,定义为
在这里插入图片描述
其中u0和σ分别是由齿形先验计算得到的齿强度的均值和标准差。

能量函数(9)可以通过使用以下梯度流的显式迭代方案最小化
在这里插入图片描述
在局部水平集模型中,加权参数β平衡了边缘项和形状先验项的贡献,其取值将影响牙齿分割的精度。β值越小的模型根据图像信息提取周齿边界的曲线演化力越强,但可能出现边界泄漏。β值较大的模型具有较强的形状约束力,可以防止水平集曲线偏离初始轮廓,也可能由于曲线演化的弱力而无法提取出真实的牙齿边界。在实现中,前牙的分割需要较高的β值以防止水平集曲线侵入牙槽骨,后牙的分割需要较小的β值以适应复杂的拓扑变化。

传统的水平集方法需要一个重新初始化的过程,为了防止水平集过于陡峭或平坦,需要耗费大量的时间。本研究通过将水平集函数与高斯滤波器进行卷积,对每次迭代后的水平集进行正则化[29]。基于高斯滤波的正则化不仅使活动轮廓平滑,而且消除了对水平集重新初始化的需要。

与之前的研究[10]、[13]相比,由于在骨组织分割步骤中牙齿的不同分支会自然分裂,因此能量函数(9)不包含包含图像强度信息的区域项,水平集曲线只需要在初始轮廓的一个相对较小的区域内演化即可提取牙齿边界。另一个不同之处在于,本研究将图像强度信息纳入边缘指标,以防止水平集曲线侵入牙槽骨。

2.3.4 起始切片的牙齿分割

对于起始切片,由于没有齿形先验,齿形传播策略是不可行的。由于该切片选择的是牙冠部分,牙槽骨与牙齿没有连接,因此可以直接从第一步分割的结果中提取牙齿轮廓。在第一步分割结果中,与人工绘制的种子点相交的区域被视为有效的牙齿区域。在Radon变换的基础上,计算出一条线来分离每一对可能接触的相邻牙齿。在分离线的计算中,利用种子点对分离线的位置和方向进行约束。

3 实验

3.1 数据和评估方法

从16个受试者中获取CBCT图像,并用于测试所提出方法的性能。这些图像由CT扫描仪(NewTom VG, Italy)扫描,体素尺寸为0.25 mm。测试图像的扫描参数为120 kV, 5 mA,曝光时间为6 s。所有的图像都是在受试者的牙齿处于开放咬合位置时扫描的,以确保上下牙齿在任何切片上都没有重叠。这些图像里没有金属制品。在分割之前,对体积图像进行手动重定向,使横向平面上的大多数切片包含所有牙齿轮廓。对于所有被测图像,λ in(5)参数设为10.0,Δt和β in(12)参数分别设为5.0和0.1。本研究经中国科学院深圳先进技术研究院机构审查委员会审查通过。获得受试者的书面知情同意。

将经验丰富的临床医生的人工分割结果作为金标准与算法结果进行比较。使用三个性能指标来评估分割精度。它们包括一个体积重叠度量Dice相似系数(DSC, %)和两个表面距离度量,平均对称表面距离(ASSD, mm)和最大对称表面距离(MSSD, mm)。这三个性能指标定义为:
在这里插入图片描述
其中,VR和VA分别为金标准和算法分割对象的体积,SR和SA分别为金标准和算法分割对象的表面,dist(a, SR)为表面点a到表面SR的最近欧几里德距离,mean{•}和max{•}分别为算术平均和最大算子。

该方法在DELL图形工作站(win7, Intel E5-2643 3.3 GHz CPU, 16gb RAM)上用MATLAB代码实现。记录了分割测试图像的处理时间,以评估所提出方法的效率。

3.2 定性结果

在这里插入图片描述
图4所示。牙槽骨分割结果。上:上颌切片,下:下颌骨切片。颜色曲线表示单个牙齿的轮廓,白色曲线表示牙槽骨的外轮廓

图4显示了使用该方法对牙冠、牙颈和牙根部分的样本切片进行牙齿和牙槽骨分割的结果。实验结果表明,该方法能够成功分割单个牙齿和牙槽骨,且具有良好的视觉分割精度。

3.3 定量结果和比较

在这里插入图片描述
本文方法在测试图像上的牙槽骨定量分割精度如表1所示。平均对称表面距离误差逼近到一个体素大小,这意味着该方法的分割精度达到像素级。

在这里插入图片描述图5所示。不同方法的牙齿分割精度比较。(a)骰子相似系数。(b)平均对称表面距离。©最大对称曲面距离

此外,还与Honstalab等人的方法[3]、Gao等人的方法[10]和Gan等人的方法[13]进行了性能比较。由于前三种方法只实现了牙齿分割,所以只对不同方法的牙齿分割结果进行比较。图5为不同方法牙齿分割精度的定量对比。我们可以看到,该方法的分割精度优于之前的方法。与Honstalab等和Gao等的方法相比,本文方法的准确率提高显著(p < 0.05, t检验)。

在这里插入图片描述
图6所示。一组图像不同分割方法的计算时间比较

所提方法分割一组体积图像的计算时间为4.23±0.67 min,不同方法的计算时间对比如图6所示。可以看出,虽然提出的方法需要两步来完成分割,但比Gao等人的方法和Gan等人的方法效率更高。原因是,在本文提出的方法中,Split Bregman方法使得第一步全局凸水平集模型的最小化比(2)中的梯度渐变迭代(10倍以上)要快得多,第二步的局部水平集比Gao等方法和Gan等方法中使用的模型要简单得多。结果表明,该方法比Gao等人的方法和Gan等人的方法效率更高。

3.4 可视化

在这里插入图片描述图7所示。根据所提出的方法分割的结果重建一个受试者的单个牙齿和牙槽骨的三维模型。

如图7所示,根据所提出的方法分割的结果重建了一名受试者的牙齿和牙槽骨的单独三维模型。这些模型提供了受试者牙齿和牙槽骨的完整信息,可用于正畸治疗计划和生物力学模拟。

4 结论

4.1 第一步分割的效果

在所提出的方法中,第一步是实现牙齿和牙槽骨从牙科CT图像的分割。第二步对牙齿进行分割后,获得单个牙齿和牙槽骨,并重建完整的牙齿-牙槽骨复合体三维模型,用于正畸治疗计划和生物力学模拟。

此外,第一步分割也有利于从牙槽骨分离出单个牙齿。在牙齿分成不同分支的切片中,不同分支之间的区域由非骨性组织(根部的软组织和冠中的空气)组成。经过第一步分割后,这些区域被分割为背景,不同的分支自然分裂。因此,不能处理拓扑变化的方法或模型是可行的,可以从牙齿和牙槽骨的连接区域中分割牙齿。
在这里插入图片描述Fig 8 二步分割与直接二步分割的分割结果比较。(a)直接使用第二步分割的结果。(b)两步分割结果。©人工分割的真实牙齿轮廓

图8为上颌第一左磨牙直接使用第二步分割与所提出的两步分割的分割结果对比。第二步中的局部水平集模型是一个基于边缘的模型。其水平集曲线难以演化到深凹结构区域,无法处理牙齿的拓扑变化。图8(a)所示的结果表明,仅使用第二步分割无法从这些具有不同分支的切片中分割出牙齿轮廓。采用所提出的两步分割方法,成功地从CT图像中提取出牙齿的不同分支,如图8(b)所示。

4.2 边缘检测器中集成强度信息的必要性

在这里插入图片描述Fig 9 边缘指标中有无图像强度的分割结果比较。(a)边缘指示器中没有图像强度的结果。(b)边缘指示器中图像强度的结果。©人工分割的真实牙齿轮廓。

传统的边缘指示器完全依靠图像梯度来驱动水平集曲线的演化,并在图像梯度最大的边界处停止。然而,在牙科CT图像中,真实的牙齿边界并不总是位于图像梯度最大的位置。由于牙区强度相对于周围牙槽骨强度较高,本研究将强度信息纳入边缘指标,使边缘指标细化后驱动水平集曲线演化,并在梯度大、强度高的边界处停止。图9(a)为未将强度信息纳入边缘指示器的方法对上颌右前磨牙的分割结果。结果表明,在没有图像强度信息的情况下,边缘指示器无法准确提取部分切片的牙齿轮廓。随着图像强度的增加,边缘指示器可以获得更精确的牙齿轮廓,如图9(b)所示。

4.3 优劣性

计算机辅助正畸治疗需要牙槽骨复合体的三维模型来进行治疗计划和模拟。然而,传统的正畸治疗主要是利用牙齿模型进行诊断和治疗计划,较少使用牙槽骨,可能会产生不良的副作用。在治疗计划中,牙槽骨为牙根的潜在位置和方向提供了参考,因此需要牙槽骨对牙根进行很好的排列。如果只使用牙齿模型进行治疗计划,计划好的牙根可能没有被牙槽骨包围,在正畸治疗后出现牙齿脱落的风险。此外,牙齿生物力学还包括牙齿、牙周韧带和牙槽骨。准确的模拟需要解剖精确的骨和牙槽骨模型[30]。由于牙槽骨的应用较少,以往的牙齿CT图像处理方法主要集中在牙齿上,没有考虑到牙槽骨。本研究开发了一种从CT图像中分割牙齿和牙槽骨进行模型重建的方法,将有利于计算机辅助正畸治疗。

在本研究中,我们只考虑受试者牙齿处于开咬位置时扫描的牙齿CT图像的分割,并且这些图像中没有金属伪影。在靠近咬合位置和/或带有金属假物的扫描图像中进行冠分割尤其困难,这在我们之前的工作中已经得到了解决[26],[31]。

该方法采用一层一层的方法从体积CT图像中分割牙齿轮廓。由于相邻切片轮廓之间的一致性较低,这种方法可能无法分割成角度的牙齿。为了分割有角度牙齿的牙科CT图像,一种可能的方法是手动重新定位不同牙齿的体积图像。在未来的工作中,我们将重点扩展所提出的方法,用于角度牙齿的鲁棒性分割。

5 结论

计算机辅助正畸治疗需要完整的牙槽骨复合体三维模型,需要将牙齿和牙槽骨从牙科CT图像中分割出来进行模型重建。然而,现有的方法只研究了牙齿的分割。本研究提出一种基于水平集的牙槽骨分割方法。该方法分两步进行分割,首先利用全局凸水平集模型分割牙齿和牙槽骨的连通区域,然后利用Radon变换和局部水平集模型将牙齿和牙槽骨从连通区域分离出来。实验结果表明,该方法能够成功地从CT图像中提取出牙齿和牙槽骨。此外,在分割精度方面,所提出的方法在牙齿分割方面的性能优于目前最先进的牙齿分割方法。结果表明,该方法可用于重建牙槽复合体的三维模型,为计算机辅助正畸治疗提供依据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值