一种全自动的牙齿CBCT三维个体识别和分割方法

本文提出了一种全自动的牙齿CBCT三维识别和分割方法,利用深度学习解决高维数据和有限训练数据的问题。通过生成全景图像进行二维分割,再进行三维ROI提取和精确分割。实验表明,此方法在牙齿识别和分割上表现出高精度,适用于临床应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

小白导读

论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

摘要

从锥形束计算机断层扫描(CBCT)图像中准确、自动地分割单个牙齿是一个具有挑战性的问题,因为很难将单个牙齿与相邻牙齿及其周围的牙槽骨分离。因此,本文提出了一种全自动的从牙齿CBCT图像中识别和分割三维个体牙齿的方法。该方法通过开发一个基于深度学习的层次多步骤模型来解决上述困难。首先,该算法能够自动生成上下颌骨全景图像,克服了高维数据带来的计算复杂度和有限训练数据集带来的维数诅咒。然后利用获得的二维全景图像对二维个体牙齿进行识别,并获取三维个体牙齿的松弛和紧张感兴趣区域(roi)。最后,采用松紧roi实现了精确的三维个体牙齿分割。实验结果表明,该方法的牙齿识别f1得分为93.35%,个体三维牙齿分割的骰子相似系数为94.79%。结果表明,所提出的方法为数字牙科提供了一个有效的临床和实践框架。

论文创新点

本文旨在通过开发一个分层多步深度学习模型来解决这些限制。本文提出的方法总结如下

### 牙齿三维图像分割的技术、方法与算法 #### 1. 基于深度学习的层次多步骤模型 一种全自动牙齿CBCT图像中识别分割三维个体牙齿方法被提出,其核心在于开发一个基于深度学习的层次多步骤模型。此模型首先能够自动生成上下颌骨全景图像,从而有效降低高维数据带来的计算复杂度以及有限训练数据集引发的维度诅咒问题[^1]。 随后,利用生成的二维全景图像完成对二维个体牙齿的初步识别,并进一步获取三维个体牙齿的松弛紧张感兴趣区域(ROI)。最终通过这些ROI实现精准的三维个体牙齿分割。实验结果显示,该方法牙齿识别上的F1分数达到93.35%,而个体三维牙齿分割的Dice相似系数高达94.79%。 #### 2. 层次化牙齿轮廓分割一种针对体积CT图像中的牙齿轮廓分割方法采用了逐层处理的方式。然而,由于相邻切片轮廓间一致性较低,这种策略对于角度较大的牙齿可能存在局限性。为此,未来的研究方向之一是探索如何通过手动重新定位不同牙齿的体积图像来增强对角度牙齿的鲁棒性分割能力[^2]。 #### 3. U-Net模型应用于语义分割 U-Net作为一种经典的卷积神经网络架构,在医学影像领域有着广泛的应用价值。一项研究表明,借助U-Net模型可以成功地对单张拍摄的全景X射线图像实施自动化语义分割操作,进而测量牙齿总长度并辅助诊断各类牙齿疾病及相关情况[^3]。尽管这一研究主要聚焦于二维平面内的应用效果评估,但它同样为拓展至三维空间提供了理论基础技术支持。 以下是使用Python实现基本版U-Net结构的一个简单例子: ```python import tensorflow as tf from tensorflow.keras import layers, models def unet_model(input_size=(128, 128, 1)): inputs = layers.Input(input_size) # Encoder (Downsampling) conv1 = layers.Conv2D(64, 3, activation='relu', padding='same')(inputs) pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = layers.Conv2D(128, 3, activation='relu', padding='same')(pool1) pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2) # Bottleneck Layer bottleneck = layers.Conv2D(256, 3, activation='relu', padding='same')(pool2) # Decoder (Upsampling) upsample1 = layers.UpSampling2D(size=(2, 2))(bottleneck) concat1 = layers.Concatenate()([upsample1, conv2]) conv3 = layers.Conv2D(128, 3, activation='relu', padding='same')(concat1) upsample2 = layers.UpSampling2D(size=(2, 2))(conv3) concat2 = layers.Concatenate()([upsample2, conv1]) conv4 = layers.Conv2D(64, 3, activation='relu', padding='same')(concat2) outputs = layers.Conv2D(1, 1, activation='sigmoid')(conv4) model = models.Model(inputs=[inputs], outputs=[outputs]) return model ``` 以上代码片段展示了构建一个简化版本U-Net模型的过程,适用于较小规模的数据集测试环境。实际项目部署时需依据具体需求调整参数配置及优化流程设计。 --- ####
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值