Java笔记:HashMap 1.8 源码分析

HashMap 1.8 源码分析

基本原理

​  HashMap 在 JDK 1.8 中,以数组-链表/红黑树的形式,来存储键-值对。

  向桶内插入一个元素时,先根据该元素的 hashCode() 方法再进行位运算,之后和哈希表中数组长度 - 1的值进行与操作,得到应当放入的桶的数组下标,若发生了哈希冲突,则以链地址法的方式解决。当一个桶内的链表长度大于树化长度后,就将其转变为红黑树,使得查找和插入的时间复杂度降低。

数据结构

	transient Node<K,V>[] table;

  使用键值对 Node 数组,来存储所有的键值对。

链表节点 Node 属性

	static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
	}

  以链表节点的形式,存储键值对,并记录根据 key 得到的 hash 值,以及链表中下一个节点的引用。

红黑树节点 TreeNode 属性

	static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {

        // 每个节点持有父节点、左右孩子节点
        // boolean 位 是否为红色

        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;

        // 使用 Node 中的 next 属性 和 红黑树节点TreeNode prev 属性
        // 可构成双向链表 供树化时使用

        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
	}

  作为红黑树上的一个节点,该节点需要存储其父节点、左右孩子节点的引用。同时静态内部类 TreeNode 继承了 LinkedHashMap.Entry ,LinkedHashMap.Entry 源码为:

   static class Entry<K,V> extends HashMap.Node<K,V> {
       Entry<K,V> before, after;
       Entry(int hash, K key, V value, Node<K,V> next) {
           super(hash, key, value, next);
       }
   }

源码部分

常量属性

    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    static final int MAXIMUM_CAPACITY = 1 << 30;

    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    static final int TREEIFY_THRESHOLD = 8;

    static final int UNTREEIFY_THRESHOLD = 6;

    static final int MIN_TREEIFY_CAPACITY = 64;

​  初始容量:16

​  还要保证,HashMap 中数组的长度,要一直为 2 的幂。每个要插入的元素,都要先对其 key 的 hashCode() 得到的哈希值进行进一步位运算处理,再和数组长度减一这一值进行与运算,数组长度为 2 的幂,就保证了数组长度减一这一值的二进制位上都是1,使得计算得到的应当放入的桶的下标只与 key 的 hashCode() 有关。同时,扩容时将数组长度变为原来的 2 倍也确保了数组长度一直是 2 的幂。此外,数组长度为 2 的幂和扩容后元素放置规律有关,在后文扩容时会提及。

  最大容量:1 << 30(2 ^ 30)

  该值是 int 范围内最大的 2 的幂,作为 HashMap 数组的最大长度再合适不过了。

​  加载因子:0.75

  树化长度:8

​  解除树化长度:6

​  树化长度和解除树化长度不相等,是为了防止桶中链表的长度在树化长度上下波动时,从而引起频繁的树化、解除树化操作。

​  最小树化容量:64

  当桶中链表长度到达树化长度,就会将该桶中的链表转换成一棵红黑树,如果当一个同种的节点数量小于等于解除树化长度时,就会解除树化。

变量属性

	 transient Node<K,V>[] table; // 存储键值对的桶,是一个 Node 数组 

    transient Set<Map.Entry<K,V>> entrySet;

    transient int size; // 当前 HashMap 对象中存储的 键值对 个数

    transient int modCount; // 操作数 fail-fast机制 触发ConcurrentModificationException

	 // 如果数组 table 没有创建,则使用此变量记录初始容量 
	 // 其余情况 :threshold = capacity * loadFactor
	 // 当 HashMap 存储的键值对个数 > threshold 时,会进行扩容
    int threshold; 

	 // 实际的加载因子
    final float loadFactor;

具体流程及方法

初始化

  HashMap 的初始化,用户可以自定义容量和加载因子,通过构造方法重载来实现参数的缺省和默认参数的传入,几个重载的构造方法代码如下:

	/**
     * Constructs an empty {@code HashMap} with the specified initial
     * capacity and load factor.
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
	public HashMap(int initialCapacity, float loadFactor) {
        // 确保 参数合理性 
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        // 位运算获取一个大于用户指定容量的数组作为初始容量
        // 寄存在threshold属性中 等待resize方法执行
        this.threshold = tableSizeFor(initialCapacity);
    }

    /**
     * Constructs an empty {@code HashMap} with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        // 用户传入自定义容量 缺省加载因子
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty {@code HashMap} with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

  HashMap 中数组的默认初始大小为 16,默认的加载因子为 0.75,也可以传入自定义的容量和加载因子。由 HashMap 创建方在初始化 HashMap 时传入的加载因子,会被记录在loadFactor属性中。但自行传入的初始容量,会在 tableSizeFor() 方法中,根据自定义容量数值,返回一个大于该自定义容量的、最小的 2 的幂,并暂时记录在属性threshold中,在之后的流程成为 Node 节点数组的长度,从而保证了数组长度为 2 的幂这一性质不会改变。tableSizeFor() 方法如下:

    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

​  将传入的cap进行减一操作得到 n ,之后的右移、或操作,是为了获得 n 的二进制最高位及其右边所有位都为 1 的一个数(即为 2 ^ n - 1),最后返回 n + 1 即为 2 ^ n,是恰好大于等于 cap 的 2 的幂。至于最后一步或运算,两边分别是 n 和 n 右移 16 位,是因为 int 类型数为 4 字节,32 位。举个例子:

0000 1001 // cap = 9
0000 1000 // n = 8 
0000 0100 // n >>> 1 = 0000 0100
0000 1100 // n |= n >>> 1; n = 12
0000 0011 // n >>> 2 = 0000 0011
0000 1111 // n |= n >>> 2; n = 15
...
0001 0000 // return 16

​  开始时,将 cap - 1,是为了防止若传入的 cap 已经是一个 2 的幂,结果会得到入参 2 倍的数。也就是说,本来需要 cap 大小的容量,结果返回的大小是所需要的 2 倍,从而在后续根据此大小,来创建数组时,会产生空间上的浪费。

​  n 和 自己右移一位进行或运算,就能保证在本次或运算的结果中,二进制最高位和次高位都是 1。之后不断进行此操作,将最高位之后 1 的部分扩大,到最后一步,就能保证将 int 类型中 n 的二进制最高位之后所有的位都变为 1,再进行加一操作,即可得到恰大于等于 cap 的最小的 2 的幂。

​  在几个构造方法中,并没有发生初始化数组的操作。只是发生了:

​  (1)若指定了加载因子,则直接记录在 loadFactor 属性中。

​  (2)若指定了容量,则将实际容量变为 2 的幂,寄存在 threshold 属性中。

​  (3)两者若都为指定,则使用默认值。

​  在后续的操作中,必然会出现初始化数组的情况。

put 方法

​  在此哈希表中加入一个键值对,如果该键已存在与哈希表中,则旧值默认会被替换为新值。

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

​  在通过 hash 方法根据key计算了一下哈希值后,实际上调用了 putVal 方法完成元素的插入。

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

​  由此可以看到,key 为 null 时,这一步得到的哈希值为 0(之后经过和数组长度 - 1进行与运算的结果为 0,即 HashMap 会将 key 为 null 的键值对放入 0 号下标数组中 )。在其他情况下,该方法会返回:key 的 hashCode() 和 该值右移 16 位进行异或操作的值。

​  之后使用 putVal 方法进行键值对的插入

/**
    * Implements Map.put and related methods.
    *
    * @param hash hash for key
    * @param key the key
    * @param value the value to put
    * @param onlyIfAbsent if true, don't change existing value
    * @param evict if false, the table is in creation mode.
    * @return previous value, or null if none
    */
   
   final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                  boolean evict) {
       Node<K,V>[] tab; Node<K,V> p; int n, i;
       // 如果发现table为空,说明这是第一次调用put方法,
       // 需要进行数组初始化
       // resize 具有初始化数组 以及扩容的功效
       if ((tab = table) == null || (n = tab.length) == 0)
           n = (tab = resize()).length;
       // 如果在tab位置的对应槽位没有数据,说明本次插入的运气比较好,
       // 找到了一个空的位置,直接新建一个节点插入到对应槽位即可。
       if ((p = tab[i = (n - 1) & hash]) == null)
           tab[i] = newNode(hash, key, value, null);
       else { // 发现这个槽位已经有数据了,即产生了哈希冲突,进一步进行判断如何解决这个问题
           // 这里的e是用来标记本次put操作是更新了已有key的数据还是插入了一个新节点
           Node<K,V> e; K k;
           // 发现刚好当前链表的头结点就是需要插入数据的key
           if (p.hash == hash &&
               ((k = p.key) == key || (key != null && key.equals(k))))
               e = p;
           // 头结点不是我们所需,且发现这个槽位中存储的其实是一个红黑树 
           // 则需要往红黑树中执行put操作
           else if (p instanceof TreeNode)
               e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
           // 到这里就发现头结点不是我们找的节点,且p不是红黑树,
           // 那么就只有去遍历链表p来进行put操作了
           else {
               // binCount是用来记录当前遍历了多少个节点的
               for (int binCount = 0; ; ++binCount) {
                   // 满足这个条件说明已经遍历到了链表p的尾节点还没找到key,
                   // 那么需要做的事情就是在最后插入新的节点 
                   // new 创建新节点
                   if ((e = p.next) == null) {
                       p.next = newNode(hash, key, value, null);
                       // 只有在插入新节点之后才会判断是否要扩容
                       // 因为此时才能得知整个链表的长度

                       // putVal 中逻辑 treeifyBin方法内部仍有控制
                       // 判断当前链表中已有的节点个数是否 >= 转换为红黑树的阀值,
                       // 如果达到条件就转化。
                       if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                           treeifyBin(tab, hash);
                       break;
                   }
                   // 遍历中间过程中,判断当前节点的key是否就是我们要寻找的那个
                   if (e.hash == hash &&
                       ((k = e.key) == key || (key != null && key.equals(k))))
                       break;
                   p = e;
               }
           }
           // e如果不为空,说明是找到了那个满足条件的节点,而非插入了一个新节点,
           // 那么我们需要做的就是把 e 的值修改为本次put的value,并返回oldValue。
           // 此处不修改表结构 因此直接return 不牵扯modCount 改变以及 size++ 扩容
           if (e != null) { 
               V oldValue = e.value;
               if (!onlyIfAbsent || oldValue == null)
                   e.value = value;
               afterNodeAccess(e);
               return oldValue;
           }
       }
       // 执行到这里,说明本次put操作是新建了一个节点插入到链表中。
       // 操作数增加
       // 判断是否扩容
       ++modCount;
       if (++size > threshold)
           resize();
       afterNodeInsertion(evict);
       return null;
   }

​  具体流程如下:

​  发现节点数组为空(第一次进行 put 操作),或者数组长度为零。则使用 resize 方法对数组重新设置。

​  计算要插入桶的下标,是使用之前得到的 hash 值,和内部节点数组长度 - 1(2 ^ n - 1,二进制位上全是 1 的数)进行与操作。如果当前位置为空,则直接新建一个节点插入到该桶中即可。

​  如果桶中该位置已经有元素,则产生了哈希冲突,有以下几种情况:

​  (1)桶中链表的头结点的 key 恰好是待插入键值对的 key,则直接进行 value 的替换。

​  (2)当前桶中存储的是一棵红黑树,将键值对按照红黑树的规则,插入到以桶内元素为根的红黑树中。

​  (3)桶中元素是链表,则遍历整个链表,遍历到空说明当前桶中链表不存在和插入 key 相同 key 的键值对,则需要创建新的链表节点,并通过尾插的方式插入到链表尾部,此时由于链表的长度变长,需要判断当前桶内链表长度是否达到树化长度,如果当前链表长度大于等于树化长度,则对该桶中的链表进行树化处理。

  (4)如果在遍历链表的过程中,找到了和要插入的键值对 key 相同的 key,则对哈希表中原来的 value 进行覆盖替换操作。

  (5)如果是替换操作,则会先记录下来要替换的键值对,替换之后直接返回。如果进行的是插入操作,最后哈希表的 size 会自增,同时判断哈希表中元素是否大于扩容阈值,若大于扩容阈值,则使用 resize 方法进行扩容。

  在整个 HashMap 中,比较 key 相等的方式为:

  首先判断根据入参key求得的hash值是否与表中key的hash值相等,不相等则直接不认为是同一对象。

  之后判断两个key的内存地址是否一致,一致则短路,认为是同一个对象。

  若非内存上的同一对象,则根据equals方法判断是否是业务逻辑上的同一个对象。

  只有hashCode相等、且内存地址相等或equals方法认为相等的两个 key 才会被HashMap认为是同一对象。(hashCode相等,经一系列运算得到的键值对中hash必然相等)。

resize 方法

  在哈希表的 put 方法中,有两个地方使用到了 resize 方法,分别负责节点数组的初始化构建,以及哈希表中元素达到扩容阈值后的扩容操作,源码如下:

	/**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        // 方法栈中保存对原数组引用
        Node<K,V>[] oldTab = table;
        // 初始化 oldCap 0  
        // 扩容 原长度   
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            // 要扩容 原数组长度不为0
            // 如果 原来的容量就已经到达最大容量
            // 将 扩容阈值 赋值为 Integer 的 最大值
            // 即 之后 不会再进行扩容 操作
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 新容量、新扩容阈值 都 设置为原来的 2 倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            // 若用户指定了容量 会寄存到属性threshold中 
            // 在本方法内先传给 oldThr 导致其 > 0
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            // 用户未指定容量 采取默认长度 16
            // 且 没有 旧阈值 说明应当初始化 数组长度、扩容阈值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 还未设置新阈值时 newThr == 0
        // 扩容时 newCap 已到达 MAXIMUM_CAPACITY 
        // 或由用户指定大小
        // 都需在此 对 新的扩容阈值 进行赋值处理 以便后续使用
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        // 红黑树有红黑树的扩容逻辑
                        // 牵扯到 有可能发生的 解除树化
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        // 桶内装的是链表
                        // 由于确定数组存放下标 & len - 1
                        // 同一桶中的元素会因最高位是 0 还是 1 被分配到新数组中
                        // 原位 或 原位 + oldLen的位置
                        // 直接用两条链表将原桶内的元素串起来 分配到新数组两个位置
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

  resize 方法,主要完成的是哈希表的初始化、以及内部节点数组扩容等操作。

  起初是对oldCap、oldThr、newCap、newThr几个变量(旧容量、旧扩容阈值、新容量、新扩容阈值)的设定,存在以下几种情况:

  (1)HashMap 对象刚刚进行了初始化。

  如果调用方在初始化 HashMap 对象时没有传入内部数组长度,没有oldCap、oldThr,则直接指定 newCap 为默认容量 16,计算出 newThr = 16 * 0.75 = 12 。

  若调用方在 HashMap 初始化时传入了内部数组长度,则在构造方法中,已经将 HashMap 对象内部的 threshold 属性设置成了恰大于等于用户指定长度的 2 的幂。并传给了 oldThr 局部变量,会把 oldThr 的值赋给 newCap。之后根据 newCap 计算出 newThr。

  (2)在使用中,HashMap 内键值对数量达到扩容阈值,新容量和新的扩容阈值都会变为原来的两倍。

  (3)若 oldCap 已经到达了设定的数组允许的最大长度(2 ^ 30),直接将 HashMap 的内部属性 threshold 记录为 Integer 的最大值,即之后不会再出发扩容操作,

  再完成对新节点数组的初始化、新容量、新扩容阈值的设定之后,接下来要完成键值对的转移,将原先节点数组中存储的键值对转移到新数组中。

  首先需要明确的是:旧数组下的元素,只可能会到达新数组的两个位置:(1)原下标位置。(2)原下标位置 + oldCap(旧数组长度)。放入的位置只与新参与到与操作的最高位有关。由于新数组的长度是旧数组长度的两倍,且均为 2 的幂,key 要进行与操作的数(数组长度 - 1,暂记作 n)在二进制位上全为 1,且新的 n 相当于是在旧 n 的高位上加了一位 1,因此旧数组下的元素,如果和 n 对应的最高位为 1,则会被放入原下标 + oldCap 这一位置的桶中,为 0,则放入原下标位置。于是,在判断旧桶中元素应该放在新数组哪个位置时,只需让原来的 key 和 oldCap 做与操作即可。为 0,则放入就下表位置;为1,则放入新位置。举个例子:

0001 0000 // 原长度:16
0000 1111 // 原 n :  15
0010 0000 // 新长度:32
0001 1111 // 新 n : 31

  在遍历旧数组的过程中,又会出现以下几种情况:

  (1)旧桶内没有元素,不做处理。

  (2)旧桶中只有一个元素,直接计算新下标位置,转移到新桶。

  (3)旧桶中是一棵红黑树,红黑树的各个节点仍维护着几个属性,一个桶中的元素仍然由一条链表串起,此时遍历这个暗含的链表,根据和旧数组长度与操作的结果,用高低两条链表重新串起所有的元素。得到了两条链表之后,放入节点数组中的对应位置。对于这两条链表,如果小于等于解除树化长度,则解除树化;否则进行树化。

  (4)旧桶中是一个链表,遍历该链表,根据和旧数组长度与操作的结果,用高低两条链表串起元素。为 0,放入低位链表;否则放入高位链表。从而避免了根据 key 的 hashCode 再进行位运算、再和新数组长度减一求与这一复杂过程的反复调用。

get 方法

  从 HashMap 对象中,根据 key 值,获取对应的键值对的 value 值,如果不存在该键值对,返回 null。

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

  调用 getNode 方法,获取到 key 对应的节点:

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

  存在以下几种情况:

  (1)桶中首个键值对即为所求,直接返回该键值对。

  (2)如果桶中存储的是一棵红黑树,以红黑树的方式获取到 key 对应的节点。

  (3)桶中是一棵链表,则遍历该链表,按照前文描述过的比较两 key 相等的情况查找对应的键值对,存在则返回。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值