Pandas入门到精通系列1-Series与DataFrame使用

Pandas是基于Numpy创建的Python第三方包, 主要用于数据分析挖掘, 基于Numpy, 拥有比Python原生数据结构更好的执行性能, 相比Numpy, 提供更方便的操作数据表的功能, 因此, 通过系列文章, 熟练掌握Pandas使用.

注: 首先介绍DataFrame的两种数据结构, 不论学习什么数据结构, 主要掌握对其进行增删改查.

1, Series增删改查使用

1.1 Series创建

小贴士: jupyter notebook使用小技巧: 

1, tab键: 自动补全

2, shift+tab键: 参数帮助

小贴士: Python的help()使用, 查看函数参数帮助及使用示例

import pandas as pd

# 查看Series使用方法
help(pd.Series())
授之以鱼不如授之以渔
# 传入默认的data参数
# 索引会是默认的0,1,2,...
pd_s1 = pd.Series([1,2,3,4,5])
pd_s1
# 自定义索引
pd_s2 = pd.Series([1,2,3,4,5],index=list('abcde'))
pd_s2
# 自定义数据类型
import numpy as np

pd_s3 = pd.Series([1,2,3,4,5],dtype = np.int32)
pd_s3
# 给这个Series加一个name属性, 用处不大, 试试而已
pd_s4 = pd.Series([1,2,3,4,5],name="测试Series")
pd_s4
# 通过标准输入添加data, 暂时没有发现应用场景, 试试而已
pd_s5 = pd.Series(input('请输入一串字符'),copy=True)
pd_s5

 

1.2 Series查询

1.3 Series查询

1.4 Series删除

2, DataFrame

2.1 数据框创建

方式1: 普通参数

方式2: 字典参数

persons = {
    'name':['小马哥','马云','马化腾'],
    'age':[18,28,38],
    'gender':['male','male','male']
}

df = pd.DataFrame(persons)
df

 

 

2.2 数据框查询

方式1: DataFrame[逻辑判断]

方式2: DataFrame.query()

方式3: DataFrame.iloc()

方式4: DataFrame.loc()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

能力工场小马哥

如果对您有帮助, 请打赏支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值