在数据科学与编程的领域中,conda 是一个极为实用的工具。它是开源的软件包管理系统和环境管理系统,能帮你轻松安装、管理软件包及其依赖,还能创建独立的运行环境,让不同项目的需求得以满足。今天,就为大家介绍 conda 在不同系统的下载方式、用途和基础用法。
一、conda 用途
- 多语言支持:最初为 Python 设计,现在已支持 R、Ruby 等多种语言,能管理不同语言项目的软件包与依赖。
- 环境管理:可创建独立的运行环境,不同项目用不同环境,避免包冲突,方便管理项目特定需求。比如,一个项目用 Python 3.7 及相关包,另一个用 Python 3.9,用 conda 都能轻松搞定。
- 包管理:能方便地安装、更新、删除软件包,自动处理包依赖,确保安装的包相互兼容。
二、各系统下载方式
(一)Anaconda 与 Miniconda 的选择
下载 conda 有 Anaconda 和 Miniconda 两个版本。Anaconda 适合新手,安装时自动包含 Python 和 1500 多个科学包,比较全面,但占用磁盘空间大(约 3GB)。Miniconda 则较为轻量,仅包含 conda 包管理器及其依赖,适合想自定义环境,手动安装所需包的用户。建议新手选 Anaconda,,有经验的用户根据需求选择。
(二)Windows 系统下载
- 选择适合你系统的版本,若电脑是 64 位,就选 64 - Bit Graphical Installer(有图形界面,安装简单);若熟悉命令行操作,也可选 64 - Bit Command Line Installer。
- 下载完成后,双击安装文件,按提示一步步完成安装,安装过程中可选择是否将 Anaconda 添加到系统路径,建议勾选,方便后续使用命令。
(三)MacOS 系统下载
- 同样在 Anaconda 官网下载页面,根据系统是 Intel 芯片还是 Apple Silicon 芯片,选择对应的版本,如 MacOS X 64 - Bit Graphical Installer(图形界面)或 MacOS X 64 - Bit Command Line Installer(命令行)。
- 下载后,打开安装文件,按安装向导提示操作,安装完成后,打开终端,输入conda --version,若显示 conda 版本号,说明安装成功。
(四)Linux 系统下载
- 打开终端,输入以下命令下载 Miniconda 安装文件(以 Python 3 版本为例):
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
若提示找不到wget命令,不同 Linux 发行版安装wget的命令如下:
- Debian 系(如 Ubuntu、Debian、Deepin、Linux Mint):
sudo apt install wget
- CentOS 系(如 CentOS 7):
sudo yum install wget
- Fedora 系统:
sudo dnf install wget
- Arch 系(如 Manjaro、Arch):
sudo pacman -S wget
- 下载完成,在终端输入以下命令运行安装脚本:
bash Miniconda3-latest-Linux-x86_64.sh
安装过程按提示操作,阅读许可协议时按回车键,询问是否接受协议输入yes。
三、conda 基础用法
(一)创建环境
打开终端(Windows 是 Anaconda Prompt),输入以下命令创建名为myenv的新环境,指定 Python 版本为 3.8:
conda create -n myenv python=3.8
(二)激活环境
创建后,使用以下命令激活环境:
- Windows:
conda activate myenv
- MacOS 和 Linux:
source activate myenv
激活后,命令行开头会显示当前环境名(myenv)。
(三)安装软件包
激活环境后,可安装所需软件包。例如安装numpy包:
conda install numpy
若要安装特定版本,如numpy 1.21.0,命令如下:
conda install numpy=1.21.0
(四)查看已安装包
在激活的环境中,输入以下命令查看已安装的软件包:
conda list
(五)退出环境
使用完环境,输入以下命令退出:
- Windows:
conda deactivate
- MacOS 和 Linux:
source deactivate
(六)删除环境
若不再需要某个环境,输入以下命令删除(以myenv为例):
conda env remove -n myenv
掌握 conda 的下载、用途和基础用法,能让你在编程与数据科学工作中更高效。