快速幂取模就是在O(logn)内求出a^n mod b的值。算法的原理是(a*b) mod c=(a mod c)*(b mod c)mod c
/*******************************************************************************
# Author : Neo Fung
# Email : neosfung@gmail.com
# Last modified: 2012-07-05 18:57
# Filename: HDU3003 Pupu.cpp
# Description :
******************************************************************************/
#ifdef _MSC_VER
#define DEBUG
#define _CRT_SECURE_NO_DEPRECATE
#endif
#include <fstream>
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <string>
#include <limits.h>
#include <algorithm>
#include <math.h>
#include <numeric>
#include <functional>
#include <ctype.h>
using namespace std;
const int kMAX=10010;
const double kEPS=10E-6;
// 快速幂取模
// 快速幂取模就是在O(logn)内求出a^n mod b的值。算法的原理是(a*b) mod c=(a mod c)*(b mod c)mod c
long long exp_mod(const long long &base,const long long &exp,const long long &mod)
{
if(exp==0ll) return 1ll%mod;
if(exp==1ll) return base%mod;
long long tmp=exp_mod(base,exp/2,mod);
tmp=tmp*tmp%mod;
if(exp&1) tmp=tmp*base%mod;//if n is odd;
return tmp;
}
int main(void)
{
#ifdef DEBUG
freopen("../stdin.txt","r",stdin);
freopen("../stdout.txt","w",stdout);
#endif
long long n;
while(~scanf("%lld",&n) && n)
{
long long ans=0;
if(n>1)
ans=exp_mod(2,n-1,n)+1;
printf("%lld\n",ans%n);
}
return 0;
}