HDU3003 Pupu,快速幂取模

5 篇文章 0 订阅

快速幂取模就是在O(logn)内求出a^n mod b的值。算法的原理是(a*b) mod c=(a mod c)*(b mod c)mod c


/*******************************************************************************
 # Author : Neo Fung
 # Email : neosfung@gmail.com
 # Last modified: 2012-07-05 18:57
 # Filename: HDU3003 Pupu.cpp
 # Description : 
 ******************************************************************************/
#ifdef _MSC_VER
#define DEBUG
#define _CRT_SECURE_NO_DEPRECATE
#endif

#include <fstream>
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <string>
#include <limits.h>
#include <algorithm>
#include <math.h>
#include <numeric>
#include <functional>
#include <ctype.h>
using namespace std;

const int kMAX=10010;
const double kEPS=10E-6;

// 快速幂取模
// 快速幂取模就是在O(logn)内求出a^n mod b的值。算法的原理是(a*b) mod c=(a mod c)*(b mod c)mod c
long long exp_mod(const long long &base,const long long &exp,const long long &mod)
{
	if(exp==0ll) return 1ll%mod;
	if(exp==1ll) return base%mod;
	long long tmp=exp_mod(base,exp/2,mod);
	tmp=tmp*tmp%mod;
	if(exp&1) tmp=tmp*base%mod;//if n is odd;
	return tmp;
}

int main(void)
{
#ifdef DEBUG  
  freopen("../stdin.txt","r",stdin);
  freopen("../stdout.txt","w",stdout); 
#endif  

	long long n;

  while(~scanf("%lld",&n) && n)
  {
		long long ans=0;
    if(n>1)
      ans=exp_mod(2,n-1,n)+1;
		printf("%lld\n",ans%n);
  }

  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值