本期例题为 LeetCode「岛屿问题」系列:
LeetCode 463. Island Perimeter 岛屿的周长(Easy)
LeetCode 695. Max Area of Island 岛屿的最大面积(Medium)
LeetCode 827. Making A Large Island 填海造陆(Hard)
我们所熟悉的 DFS(深度优先搜索)问题通常是在树或者图结构上进行的。而我们今天要讨论的 DFS 问题,是在一种「网格」结构中进行的。岛屿问题是这类网格 DFS 问题的典型代表。网格结构遍历起来要比二叉树复杂一些,如果没有掌握一定的方法,DFS 代码容易写得冗长繁杂。
本文将以岛屿问题为例,展示网格类问题 DFS 通用思路,以及如何让代码变得简洁。主要内容包括:
网格类问题的基本性质
在网格中进行 DFS 遍历的方法与技巧
三个岛屿问题的解法
相关题目
网格类问题的 DFS 遍历方法
网格问题的基本概念
我们首先明确一下岛屿问题中的网格结构是如何定义的,以方便我们后面的讨论。
网格问题是由 个小方格组成一个网格,每个小方格与其上下左右四个方格认为是相邻的,要在这样的网格上进行某种搜索。
岛屿问题是一类典型的网格问题。每个格子中的数字可能是 0 或者 1。我们把数字为 0 的格子看成海洋格子,数字为 1 的格子看成陆地格子,这样相邻的陆地格子就连接成一个岛屿。
在这样一个设定下,就出现了各种岛屿问题的变种,包括岛屿的数量、面积、周长等。不过这些问题,基本都可以用 DFS 遍历来解决。
DFS 的基本结构
网格结构要比二叉树结构稍微复杂一些,它其实是一种简化版的图结构。要写好网格上的 DFS 遍历,我们首先要理解二叉树上的 DFS 遍历方法,再类比写出网格结构上的 DFS 遍历。我们写的二叉树 DFS 遍历一般是这样的:
void traverse(TreeNode root) {
// 判断 base case
if (root == null) {
return;
}
// 访问两个相邻结点:左子结点、右子结点
traverse(root.left);
traverse(root.right);
}
可以看到,二叉树的 DFS 有两个要素:「访问相邻结点」和「判断 base case」。
第一个要素是访问相邻结点。二叉树的相邻结点非常简单,只有左子结点和右子结点两个。二叉树本身就是一个递归定义的结构:一棵二叉树,它的左子树和右子树也是一棵二叉树。那么我们的 DFS 遍历只需要递归调用左子树和右子树即可。
第二个要素是 判断 base case。一般来说,二叉树遍历的 base case 是 root == null
。这样一个条件判断其实有两个含义:一方面,这表示 root
指向的子树为空,不需要再往下遍历了。另一方面,在 root == null
的时候及时返回,可以让后面的 root.left
和 root.right
操作不会出现空指针异常。
对于网格上的 DFS,我们完全可以参考二叉树的 DFS,写出网格 DFS 的两个要素:
首先,网格结构中的格子有多少相邻结点?答案是上下左右四个。对于格子 (r, c)
来说(r 和 c 分别代表行坐标和列坐标),四个相邻的格子分别是 (r-1, c)
、(r+1, c)
、(r, c-1)
、