LeetCode 例题精讲 | 12 岛屿问题:网格结构中的 DFS

本文深入探讨LeetCode中的岛屿问题,通过DFS遍历解决网格结构问题。文章介绍了网格DFS的基本概念、避免重复遍历的策略,并通过3道例题详细讲解了岛屿的最大面积、填海造陆和周长的解法,帮助读者理解如何在网格问题中应用DFS。
摘要由CSDN通过智能技术生成

本期例题为 LeetCode「岛屿问题」系列:

  • LeetCode 463. Island Perimeter 岛屿的周长(Easy)

  • LeetCode 695. Max Area of Island 岛屿的最大面积(Medium)

  • LeetCode 827. Making A Large Island 填海造陆(Hard)

我们所熟悉的 DFS(深度优先搜索)问题通常是在树或者图结构上进行的。而我们今天要讨论的 DFS 问题,是在一种「网格」结构中进行的。岛屿问题是这类网格 DFS 问题的典型代表。网格结构遍历起来要比二叉树复杂一些,如果没有掌握一定的方法,DFS 代码容易写得冗长繁杂。

本文将以岛屿问题为例,展示网格类问题 DFS 通用思路,以及如何让代码变得简洁。主要内容包括:

  • 网格类问题的基本性质

  • 在网格中进行 DFS 遍历的方法与技巧

  • 三个岛屿问题的解法

  • 相关题目

网格类问题的 DFS 遍历方法

网格问题的基本概念

我们首先明确一下岛屿问题中的网格结构是如何定义的,以方便我们后面的讨论。

网格问题是由 个小方格组成一个网格,每个小方格与其上下左右四个方格认为是相邻的,要在这样的网格上进行某种搜索。

岛屿问题是一类典型的网格问题。每个格子中的数字可能是 0 或者 1。我们把数字为 0 的格子看成海洋格子,数字为 1 的格子看成陆地格子,这样相邻的陆地格子就连接成一个岛屿。

岛屿问题示例

在这样一个设定下,就出现了各种岛屿问题的变种,包括岛屿的数量、面积、周长等。不过这些问题,基本都可以用 DFS 遍历来解决。

DFS 的基本结构

网格结构要比二叉树结构稍微复杂一些,它其实是一种简化版的结构。要写好网格上的 DFS 遍历,我们首先要理解二叉树上的 DFS 遍历方法,再类比写出网格结构上的 DFS 遍历。我们写的二叉树 DFS 遍历一般是这样的:

void traverse(TreeNode root) {
    // 判断 base case
    if (root == null) {
        return;
    }
    // 访问两个相邻结点:左子结点、右子结点
    traverse(root.left);
    traverse(root.right);
}

可以看到,二叉树的 DFS 有两个要素:「访问相邻结点」和「判断 base case」。

第一个要素是访问相邻结点。二叉树的相邻结点非常简单,只有左子结点和右子结点两个。二叉树本身就是一个递归定义的结构:一棵二叉树,它的左子树和右子树也是一棵二叉树。那么我们的 DFS 遍历只需要递归调用左子树和右子树即可。

第二个要素是 判断 base case。一般来说,二叉树遍历的 base case 是 root == null。这样一个条件判断其实有两个含义:一方面,这表示 root 指向的子树为空,不需要再往下遍历了。另一方面,在 root == null 的时候及时返回,可以让后面的 root.leftroot.right 操作不会出现空指针异常。

对于网格上的 DFS,我们完全可以参考二叉树的 DFS,写出网格 DFS 的两个要素:

首先,网格结构中的格子有多少相邻结点?答案是上下左右四个。对于格子 (r, c) 来说(r 和 c 分别代表行坐标和列坐标),四个相邻的格子分别是 (r-1, c)(r+1, c)(r, c-1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值