A题 期望个数统计
推一下结论的签到题:
排列中每个数字出现在顺序排列的可能性是 1 n \frac{1}{n} n1
共有 n n n个数字,期望 E ( x ) = 1 n ∗ n = 1 E(x)=\frac{1}{n}*n=1 E(x)=n1∗n=1
多个出现的相同能力值的人记录一个就行
class Solution {
public:
const int maxn=2e5+5;
set<int>s;
int n;
int expectNumber(vector<int>& scores)
{
for(auto x:scores)
{
s.insert(x);
}
return s.size();
}
};
B题 小张刷题计划
小张顺序做题,每天可以通过别人pass掉一题,规定了做题的最大天数,求最大每天做题时间的最小值
最大值最小化 \textbf{最大值最小化} 最大值最小化,不要太经典的 二分答案题型 \textbf{二分答案题型} 二分答案题型,正着做不太好做,就通过二分答案,再判断是否满足要求,根据判断函数的满足与否决定放缩的方向
即二分 最大每天做题时间,再写check函数判断
#define ll long long
class Solution {
public:
int check(int day,int oneday,vector<int>a )
{
int sum=0;
int cnt=1;
int max_now=a[0];//记录当前子区间的最值
for(int i=1;i<a.size();i++)
{
if(sum+min(a[i],max_now)<=oneday)
{
sum+=min(a[i],max_now);
max_now=max(max_now,a[i]);
}
else
{
cnt++;
max_now=a[i];
sum=0;
}
}
if(cnt<=day)return 1;
return 0;
}
int minTime(vector<int>& time, int m)
{
int maxx=0;
int sum=0;
for(auto x:time)
{
maxx=max(maxx,x);
sum+=x;
}
int l=0,r=sum;
int mid;
int ans=0;
while(l<=r)
{
mid=(l+r)/2;
if(check(m,mid,time))//缩小
{
ans=mid;
r=mid-1;
}
else
{
l=mid+1;
}
}
return ans;
}
};
C题 寻宝 (预处理+状压dp 很有意思的题目)
题目大意:
从起始点 S S S开始走,#表示无法通行,图上有若干 M M M, O O O点,分别为机关点和石头堆,每个机关点都需要从任一石头堆中搬一块石头启动,问启动所有机关后到达T点的最短时间,无法到达输出 − 1 -1 −1
M ≤ 16 , O ≤ 40 M\leq16,O\leq40 M≤16,O≤40
题解思路:
这题可太有意思了,还很恶心人。。。
模拟一下过程:
S S S → \rightarrow → O a O_a Oa → \rightarrow → M i M_i Mi → \rightarrow → O b O_b Ob → \rightarrow → M j M_j