题干
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
-
例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。 - 相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums
,返回 nums
中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5] 输出:6 解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8] 输出:7 解释:这个序列包含几个长度为 7 摆动序列。 其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
示例 3:
输入:nums = [1,2,3,4,5,6,7,8,9] 输出:2
解题思路
本题采用的是贪心算法,在寻找局部最优策略的时候,我们可以用画图的方法来找感觉,做尝试。
例如这道题目与数字的大小顺序有关,所以我们可以画下图这样的波状图。
经过观察,我们发现单调递增或递减的数字是不可能产生摆动的,所以它们其实是干扰项,因此我们的思路是删除单调坡度上的节点(不包括单调坡度两端的节点),使这个坡度只留下两个局部峰值。这就是局部最优。
最终留下了所有的局部峰值,从而达到最长摆动序列,实现了全局最优。
判断局部坡峰的代码如下
if ((preDiff < 0 && curDiff > 0) || (preDiff > 0 && curDiff < 0)) {
result++;
}
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
int curDiff = 0; // 当前一对差值
int preDiff = 0; // 前一对差值
int result = 0;
for (int i = 0; i < nums.size(); i++) {
curDiff = nums[i + 1] - nums[i];
// 出现峰值
if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
result++;
}
preDiff = curDiff;
}
return result;
}
};
虽然我们有了基本的思路,但是实际操作中还有三个情况需要考虑。
情况一:上下坡中有平坡
情况二:单调坡中有平坡
情况三:首尾元素两端
情况一如图所示
因为我们选取的峰值点理应只有一个,所以我们需要去除重复的元素。那么我们要保留哪一个元素呢?答案是最后一个,我的理解是由于我们的遍历是从左到右的顺序,只有到遍历到最后一个我们才能排除所有重复的元素。
因此,我们修改判断坡峰的代码,增加prediff可以等于0的条件。
if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
result++;
}
但事实上这样的修改是不完善的,因为平坡也可能出现在单调坡中。
这种情况的平坡事实上是不严格单调递增或递减。如果我们能让prediff停留在平坡之前的值,就可以近似的忽略掉平坡的存在,变为严格单调函数。怎么才能做到这一点呢,原来我们之前的prediff始终随着curdiff实时更新的,所以会自然的进入到平坡中。而如果我们只在出现摆动的情况下才更新prediff的值,那么也就保留住了平坡之前的信息。
代码如下
if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
result++;
preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
}
写到这里我们可能会产生疑问,既然我们在只有摆动变化的时候才更新prediff,那岂不是相当于跳过了平坡的情况,不会出现prediff等于0的时候。那我们是不是可以把之前代码中的=0删除。
笔者当时就出现了这样的疑问,因此也去尝试删掉prediff==0的条件,但是在编译的过程中,我发现我遗漏了一种情况,即从一开始就是平坡的情况,比如nums=[0,0,0,2]。所以等于0是必要的,而且甚至有助于我们简化情况三的代码。
情况三
在统计峰值的时候,首尾两端没有prediff或者curdiff,我们该如何判断呢?
我们可以把首元素前面虚拟添加一个相同的元素,这样它的prediff值就等于0了。也符合我们之前的峰值判断条件。
至于尾元素,我们不难发现无论何种情况,尾元素都是峰值点,所以我们把result的初始值记为1.
最后的完整代码如下
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if(nums.size() == 1){//如果只有1个元素,直接返回1
return 1;
}
int curdiff = 0;
int prediff = 0;//初始值为0,虚拟添加一个相同元素
int result = 1;//记录峰值个数,序列默认序列最右边有一个峰值
for(int i = 0; i < nums.size() - 1; i++){//减去最右边元素的遍历
curdiff = nums[i + 1] - nums[i];
if((prediff >= 0 && curdiff < 0)||(prediff <= 0 && curdiff > 0)){
result ++;
prediff = curdiff;// 注意这里,只在摆动变化的时候更新prediff
}
}
return result;
}
};
卡尔的思路是把平坡的情况纳入在了自己的逻辑中,所以判断条件中有等于0的情况。
经过我第二次尝试写代码后,我想出了一个更加符合自己理解的代码。
首先说一下我的基础思路,首尾两个点默认为拐点,会被计数,中间的点如果是拐点也纳入计数。
主要修改有两个地方,一个是对于平坡的处理,我觉得这个问题和之前处理重复元素的思路很像,所以我用了continue,具体来说就是遇到curdiff==0,就跳过直到curdiff不为0,同时prediff不更新。这样就相当于把所有平坡的地方全部跳过,就好像没有平坡一样。
还有就是对于首元素的判断,因为前几个元素有可能形成平坡,而我的思路又是跳过平坡的,所以首元素不一定是第一个元素。那么怎么判断呢,把判断放在跳过平坡的语句之后,这样就跳过了平坡,再用count的值来判断是否是第一个计数的元素。
完整代码如下
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
//记录最长子序列的长度
//默认最后一个元素是拐点,所以count初始值为1
int count = 1;
int curdiff = 0;
int prediff = 0;
if(nums.size() == 1)
return 1;
// 遍历数组
for(int i = 0; i < nums.size()-1; i++){
//当前两两之差
curdiff = nums[i+1] - nums[i];
//排除平地, 如果有平地,要找到不为0的curdiff,保留不为0的prediff
if(curdiff == 0){
continue;
}
if(count == 1)
count++;
//判断拐点
if(prediff > 0 && curdiff < 0 || prediff < 0 && curdiff > 0){
count ++;
}
//记录上一个两两之差
prediff = curdiff;
}
return count;
}
};
在写代码过程中有遇到几个问题
第一个问题:如何判断拐点,利用数列的递增,递减的定义,计算两两之差
第二个问题:nums[i]的前后元素我是可以直接使用nums[i-1]和nums[i+1],不用保存,认为不行应该是混淆了其他需要保存的题目
第三个问题:既然最后一个元素肯定算作拐点,那么就设置count的初始值为1,不用再加一个判断了
第四个问题:continue 搭配的if,不是while
while(curdiff == 0){
continue;
continue跳过的是while