力扣刷题 376.摆动序列

题干

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

  • 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:

输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

解题思路

本题采用的是贪心算法,在寻找局部最优策略的时候,我们可以用画图的方法来找感觉,做尝试。

例如这道题目与数字的大小顺序有关,所以我们可以画下图这样的波状图。

经过观察,我们发现单调递增或递减的数字是不可能产生摆动的,所以它们其实是干扰项,因此我们的思路是删除单调坡度上的节点(不包括单调坡度两端的节点),使这个坡度只留下两个局部峰值。这就是局部最优

最终留下了所有的局部峰值,从而达到最长摆动序列,实现了全局最优

判断局部坡峰的代码如下

if ((preDiff < 0 && curDiff > 0) || (preDiff > 0 && curDiff < 0)) {
      result++;
 }
class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 0;
        for (int i = 0; i < nums.size(); i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
            }
            preDiff = curDiff; 
        }
        return result;
    }
};

虽然我们有了基本的思路,但是实际操作中还有三个情况需要考虑。

情况一:上下坡中有平坡

情况二:单调坡中有平坡

情况三:首尾元素两端


情况一如图所示

因为我们选取的峰值点理应只有一个,所以我们需要去除重复的元素。那么我们要保留哪一个元素呢?答案是最后一个,我的理解是由于我们的遍历是从左到右的顺序,只有到遍历到最后一个我们才能排除所有重复的元素。

因此,我们修改判断坡峰的代码,增加prediff可以等于0的条件。

if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
    result++;
}

但事实上这样的修改是不完善的,因为平坡也可能出现在单调坡中。

 这种情况的平坡事实上是不严格单调递增或递减。如果我们能让prediff停留在平坡之前的值,就可以近似的忽略掉平坡的存在,变为严格单调函数。怎么才能做到这一点呢,原来我们之前的prediff始终随着curdiff实时更新的,所以会自然的进入到平坡中。而如果我们只在出现摆动的情况下才更新prediff的值,那么也就保留住了平坡之前的信息。

代码如下

 if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
 }

写到这里我们可能会产生疑问,既然我们在只有摆动变化的时候才更新prediff,那岂不是相当于跳过了平坡的情况,不会出现prediff等于0的时候。那我们是不是可以把之前代码中的=0删除。

笔者当时就出现了这样的疑问,因此也去尝试删掉prediff==0的条件,但是在编译的过程中,我发现我遗漏了一种情况,即从一开始就是平坡的情况,比如nums=[0,0,0,2]。所以等于0是必要的,而且甚至有助于我们简化情况三的代码。


情况三

在统计峰值的时候,首尾两端没有prediff或者curdiff,我们该如何判断呢?

我们可以把首元素前面虚拟添加一个相同的元素,这样它的prediff值就等于0了。也符合我们之前的峰值判断条件。

至于尾元素,我们不难发现无论何种情况,尾元素都是峰值点,所以我们把result的初始值记为1.


最后的完整代码如下

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if(nums.size() == 1){//如果只有1个元素,直接返回1
            return 1;
        }
        int curdiff = 0;
        int prediff = 0;//初始值为0,虚拟添加一个相同元素
        int result = 1;//记录峰值个数,序列默认序列最右边有一个峰值
        for(int i = 0; i < nums.size() - 1; i++){//减去最右边元素的遍历
            curdiff = nums[i + 1] - nums[i];
            if((prediff >= 0 && curdiff < 0)||(prediff <= 0 && curdiff > 0)){
                result ++;
                prediff = curdiff;// 注意这里,只在摆动变化的时候更新prediff
            }    
        }
        return result;
    }
};

卡尔的思路是把平坡的情况纳入在了自己的逻辑中,所以判断条件中有等于0的情况。

经过我第二次尝试写代码后,我想出了一个更加符合自己理解的代码。

首先说一下我的基础思路,首尾两个点默认为拐点,会被计数,中间的点如果是拐点也纳入计数。

主要修改有两个地方,一个是对于平坡的处理,我觉得这个问题和之前处理重复元素的思路很像,所以我用了continue,具体来说就是遇到curdiff==0,就跳过直到curdiff不为0,同时prediff不更新。这样就相当于把所有平坡的地方全部跳过,就好像没有平坡一样。

还有就是对于首元素的判断,因为前几个元素有可能形成平坡,而我的思路又是跳过平坡的,所以首元素不一定是第一个元素。那么怎么判断呢,把判断放在跳过平坡的语句之后,这样就跳过了平坡,再用count的值来判断是否是第一个计数的元素。

完整代码如下

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        //记录最长子序列的长度
        //默认最后一个元素是拐点,所以count初始值为1
        int count = 1;
        int curdiff = 0;
        int prediff = 0;
        if(nums.size() == 1)
            return 1;
        // 遍历数组
        for(int i = 0; i < nums.size()-1; i++){
            //当前两两之差
            curdiff = nums[i+1] - nums[i];
            //排除平地, 如果有平地,要找到不为0的curdiff,保留不为0的prediff
            if(curdiff == 0){
                continue;
            }
            if(count == 1)
               count++;
            //判断拐点 
            if(prediff > 0 && curdiff < 0 || prediff < 0 && curdiff > 0){
                count ++;
            }
            //记录上一个两两之差
            prediff = curdiff;
        }
    return count;
    }
};

在写代码过程中有遇到几个问题

第一个问题:如何判断拐点,利用数列的递增,递减的定义,计算两两之差

第二个问题:nums[i]的前后元素我是可以直接使用nums[i-1]和nums[i+1],不用保存,认为不行应该是混淆了其他需要保存的题目

第三个问题:既然最后一个元素肯定算作拐点,那么就设置count的初始值为1,不用再加一个判断了

第四个问题:continue 搭配的if,不是while

       while(curdiff == 0){

              continue;

 continue跳过的是while

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值