LeetCode 486. 预测赢家(Medium)/ 877. 石子游戏(M)

486. 预测赢家

给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。
给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。

【题目链接】

  1. 官方题解
  2. 三种写法:递归、记忆化递归、动态规划
  3. 零和博弈!记忆化 0ms 搞定 ~

Trick

当数组长度为偶数时,玩家1必赢。

因为偶数长度的数组,两个玩家能够取的数的个数是一样的,则可以遍历完每一种取法,玩家1直接使用可以获得最高分的取法即可。

方法一:递归

思想:由于每次只能从数组的任意一端拿取数字,因此可以保证数组中剩下的部分一定是连续的,所以可以递归进行不断分解原问题,直至最小子问题(最后剩余的数组只有一个元素)。

递归终止条件
1. 若当前数组只有一个元素,此时直接返回此元素的所属者,即选手1还是选手2(先手还是后手)
2. 若当前数组含有多于一个元素,则比较:拿第一个,还是拿最后一个得分更高。若剩余数组长度大于1,则重复执行2,继续递归

  1. python
class Solution:
	### 官方解
    def PredictTheWinner(self, nums: List[int]) -> bool:
        def total(start: int, end: int, turn: int) -> int:
            if start == end:
                return nums[start] * turn
            scoreStart = nums[start] * turn + total(start + 1, end, -turn)
            scoreEnd = nums[end] * turn + total(start, end - 1, -turn)
            return max(scoreStart * turn, scoreEnd * turn) * turn
        
        return total(0, len(nums) - 1, 1) >= 0

	### 个人解
	def PredictTheWinner(self, nums):
        def leftMax(L, R):
            if L == R:
                return nums[L]
            scoreL = nums[L] - leftMax(L+1, R)
            scoreR = nums[R] - leftMax(L, R-1)
            return max(scoreL, scoreR)

        return leftMax(0, len(nums)-1) >= 0
  1. C++
class Solution {
public:
    bool PredictTheWinner(vector<int>& nums) {
        return total(nums, 0, nums.size() - 1, 1) >= 0;
    }

    int total(vector<int>& nums, int start, int end, int turn) {
        if (start == end) {
            return nums[start] * turn;
        }
        int scoreStart = nums[start] * turn + total(nums, start + 1, end, -turn);
        int scoreEnd = nums[end] * turn + total(nums, start, end - 1, -turn);
        return max(scoreStart * turn, scoreEnd * turn) * turn;
    }
};

复杂度分析

时间复杂度:O(2n),其中 n 是数组的长度。

空间复杂度:O(n),其中 n 是数组的长度。空间复杂度取决于递归使用的栈空间。

方法二:动态规划(Dynamic Programming)

在这里插入图片描述

  1. python
class Solution:
    def PredictTheWinner(self, nums: List[int]) -> bool:
        length = len(nums)
        dp = [[0] * length for _ in range(length)]
        for i, num in enumerate(nums):
            dp[i][i] = num
        for i in range(length - 2, -1, -1): # 行数从倒数第二行开始,递减,直至最开始一行
            for j in range(i + 1, length):  # 列数从当前行数加一开始,递增,直至最后一列
            	# nums[i] - dp[i + 1][j]表示拿左端的值与剩下的最大值的差
            	# nums[j] - dp[i][j - 1]表示拿右端的值与剩下的最大值的差
                dp[i][j] = max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1])
                
        # 由于选手1为全局先手,因此需要查看 j - i == length - 1 的元素值是否大于等于0,即全局查看(跨度为整个数组的长度)
        return dp[0][length - 1] >= 0       

在这里插入图片描述
空间优化后,使用一维数组

class Solution:
    def PredictTheWinner(self, nums: List[int]) -> bool:
        length = len(nums)
        dp = [0] * length # 空间优化,使用一维数组
        for i, num in enumerate(nums):
            dp[i] = num # 初始化一维数组为原数组,在后面进行动态规划时,数组dp中每位将动态表示为此时取此位能够得到的最大值/最优解
        for i in range(length - 2, -1, -1): # 考虑最后的最小的一个子数组,从后往前还成原数组,每次考虑获胜最多/最优的情况(贪心策略)
            for j in range(i + 1, length):  # 每次都要与i之后的所有j来计算一次,以获得最优解
            	# nums[i] - dp[i + 1][j]表示拿左端的值与剩下的最大值的差
            	# nums[j] - dp[i][j - 1]表示拿右端的值与剩下的最大值的差
            	# dp[i][j] = max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1])
                dp[j] = max(nums[i] - dp[j], nums[j] - dp[j - 1])
        return dp[length - 1] >= 0 # dp[0][length - 1] >= 0  
  1. C++
class Solution {
public:
    bool PredictTheWinner(vector<int>& nums) {
        int length = nums.size();
        auto dp = vector<vector<int>> (length, vector<int>(length));
        for (int i = 0; i < length; i++) {
            dp[i][i] = nums[i];
        }
        for (int i = length - 2; i >= 0; i--) {
            for (int j = i + 1; j < length; j++) {
                dp[i][j] = max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
            }
        }
        return dp[0][length - 1] >= 0;
    }
};

空间优化后,使用一维数组

class Solution {
public:
    bool PredictTheWinner(vector<int>& nums) {
        int length = nums.size();
        auto dp = vector<int>(length);
        for (int i = 0; i < length; i++) {
            dp[i] = nums[i];
        }
        for (int i = length - 2; i >= 0; i--) {
            for (int j = i + 1; j < length; j++) {
                dp[j] = max(nums[i] - dp[j], nums[j] - dp[j - 1]);
            }
        }
        return dp[length - 1] >= 0;
    }
};

复杂度分析
在这里插入图片描述

877. 石子游戏

在这里插入图片描述

class Solution:
    def stoneGame(self, piles: List[int]) -> bool:
        length = len(piles)
        dp = [[0] * length for _ in range(length)]
        
        for i, pile in enumerate(piles):
            dp[i][i] = pile

        for i in range(length - 2, -1, -1):
            for j in range(i + 1, length):
                dp[i][j] = max(piles[i] - dp[i + 1][j], piles[j] - dp[i][j - 1])

        return dp[0][length - 1] > 0

在这里插入图片描述

  • 解法2(数学方法)
    在这里插入图片描述
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值