题目 路径总和
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。
说明: 叶子节点是指没有子节点的节点。
示例:
给定如下二叉树,以及目标和 sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/path-sum
思路
第一反应既然是要找一个具体的目标值,那么比较合适的做法就是必然能找到最优结果的广度优先搜索。按照广度优先搜索的思路来做是这样的:
class Solution {
public:
bool hasPathSum(TreeNode* root, int sum) {
queue<TreeNode*> data_1;
queue<int> data_2;
if (root != NULL) {
if (root->val == sum) {
if (root->left == NULL && root->right == NULL) {
return true;
}
}
data_1.push(root);
data_2.push(root->val);
}
TreeNode* curr;
int total;
while (!data_1.empty()) {
curr = data_1.front();
data_1.pop();
total = data_2.front();
data_2.pop();
if (curr->left != NULL) {
if (total + curr->left->val == sum) {
if (curr->left->left == NULL && curr->left->right == NULL) {
return true;
}
}
data_1.push(curr->left);
data_2.push(total + curr->left->val);
}
if (curr->right != NULL) {
if (total + curr->right->val == sum) {
if (curr->right->left == NULL && curr->right->right == NULL) {
return true;
}
}
data_1.push(curr->right);
data_2.push(total + curr->right->val);
}
}
return false;
}
};
其中有个值得注意的点,就是我初次编码的时候看错了题目,题目要求是直到叶子节点的路径,我还以为找到符合条件的路径即可,没考虑叶子结点的问题。
以及广度优先遍历的时间复杂度为O(n),n为树中节点的数目。空间复杂度其实相比深度优先遍历或者递归稍微差一些,但空间结果已经达到100了,就偷个懒不做优化了。