opencv--图像处理基础

  1. 灰度
  2. 颜色反转
  3. 马赛克
  4. 毛玻璃
  5. 融合
  6. 边缘检测
  7. 浮雕效果
  8. 颜色映射
  9. 油画效果
  10. 其它

灰度:
灰度与彩色的区别:

import cv2
img0 = cv2.imread('image0.jpg',0)
img1 = cv2.imread('image0.jpg',1)
print(img0.shape)
print(img1.shape)

运行结果:

(547, 730)
(547, 730, 3)

彩色图像:每个像素由R、G、B三个分量表示,每个通道取值范围0~255。数据类型一般为8位无符号整形。
灰度图像:每个像素只有一个采样颜色的图像,这类图像通常显示为从最暗黑色到最亮的白色的灰度。
另外:
二值图像(黑白图像):每个像素点只有两种可能,0和1,0代表黑色,1代表白色。数据类型通常为1个二进制位。
索引图像:类似于查字典,为了解决彩色图像消耗空间大的问题,一般应用于色彩构成比较简单的场景。

三种方法:
method1:

import cv2
img = cv2.imread('image0.jpg',1)
dst = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('dst',dst)
cv2.waitKey(0)

cv2.cvtColor方法
method2:

import cv2
import numpy as np
img = cv2.imread('image0.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
    for j in range(0,width):
        (b,r,g) = img[i,j]
        gray = (int(b)+int(r)+int(g))/3
        dst[i,j] = np.uint8(gray)
cv2.imshow('dst',dst)
cv2.waitKey()

rgb均值
method3:

#gray = r*0.299 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值