UVa116 Unidirectional TSP

一个求最短路的题目,算不上是TSP吧,只是普通的dp,不过要打印字典序最小的路径,一开始是由后向前递推,结果悲剧了。。。原来打印字典序最小要从前向后递推的,结果后面还是WA了,然后人品爆发,发现一开始打印路径的起始条件为最小权和,终止条件是print_path(int row,int col,int sum)中的sum==0,但其实在中途就有可能会sum==0的,因为节点可以是负数,改成col==n-1就AC了,嘿嘿

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
using namespace std;
long g[12][102],d[12][102];
const long inf=1<<30;
int m,n;
void print_path(int row,int col,long sum)
{
    printf("%d",row+1);
    sum-=g[row][col];
    if(col==n-1) return;
    printf(" ");
    if(row==0)
    {
        if(d[row][col+1]==sum)//向右走
            {
                print_path(row,col+1,sum);
                return;
            }
        if(d[row+1][col+1]==sum)//向右下方走
            {
                print_path(row+1,col+1,sum);
                return;
            }
            print_path(m-1,col+1,sum);//循环转到第m-1行
            return;
    }
    if(row==m-1)
    {
        if(d[0][col+1]==sum)//循环转到第0行
        {
            print_path(0,col+1,sum);
            return;
        }
        if(d[row-1][col+1]==sum)//向右上方走
            {
                print_path(row-1,col+1,sum);
                return;
            }
                print_path(row,col+1,sum);//向右走
                return;
    }
    if(d[row-1][col+1]==sum)//向右上方走
        {
            print_path(row-1,col+1,sum);
            return;
        }
    if(d[row][col+1]==sum)//向右走
        {
            print_path(row,col+1,sum);
            return;
        }
        print_path(row+1,col+1,sum);
}
int main()
{
    //以下注释为生成随机数测试样例代码,可无视
/*    freopen("in.txt","w",stdout);
//    srand((unsigned)time(NULL));
//    int t=rand()%10+1;
//    printf("%d\n",t);
//    while(t--)
//    {
//        m=rand()%10+1,n=rand()%100+1;
//        printf("%d %d\n",m,n);
//        for(int i=0;i<m;i++)
//            {
//                for(int j=0;j<n;j++)
//                {
//                    if(rand()%2)
//                    {
//                        g[i][j]=rand();
//                    }
//                    else
//                    {
//                        g[i][j]=-rand();
//                    }
//                    printf("%ld ",g[i][j]);
//                }
//                printf("\n");
//            }
//    }
//    return 0;
*/
    //freopen("in.txt","r",stdin);
    //freopen("myout.txt","w",stdout);
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        memset(g,0,sizeof(g));
        for(int i=0;i<m;i++)
            for(int j=0;j<n;j++)
                scanf("%ld",&g[i][j]);
            for(int j=0;j<m;j++)
                {
                    for(int k=0;k<n;k++)
                    {
                        d[j][k]=inf;
                    }
                }
            for(int k=0;k<m;k++)
                d[k][n-1]=g[k][n-1];
            for(int j=n-2;j>=0;j--)
                for(int k=0;k<m;k++)
                    {
                        long temp=d[(k-1+m)%m][j+1]+g[k][j];//去右上方
                        if(temp<d[k][j])//站在k行,j列,到第n-1列的和最小值
                        {
                            d[k][j]=temp;
                        }
                        temp=d[k][j+1]+g[k][j];//去右边
                        if(temp<d[k][j])
                        {
//                            d[j][k]=min(d[j][k],d[j-1][k]+g[k][j]);
                            d[k][j]=temp;
                        }
                        temp=d[(k+1)%m][j+1]+g[k][j];//去右下方
                        if(temp<d[k][j])
                        {
//                            d[j][k]=min(d[j][k],d[j-1][(k+1)%m]+g[k][j]);
                            d[k][j]=temp;
                        }
                    }
            long minnum=inf;
            int row;
            for(int k=0;k<m;k++)
                {
                    if(d[k][0]<minnum)
                    {
                        row=k;
                        minnum=d[k][0];
                    }
                    //printf("%ld ",d[n-1][k]);
                }
                print_path(row,0,minnum);
                printf("\n%ld\n",minnum);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值