欧拉习题21

这段MATLAB代码用于寻找10000以内满足友好数定义的数对(a, b),即d(a) = b且d(b) = a,其中d(n)表示n的真因子之和。通过计算每个数的真因子和并检查是否形成友好数对,最终求出所有友好数的和。
摘要由CSDN通过智能技术生成

题目如下:

Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.

For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.

Evaluate the sum of all the amicable numbers under 10000.

MATLAB代码如下

a = 1:10000;
b = a*~mod(a,a')-a; 
c = sum(find(arrayfun(@(a)b(b(a))==a&b(a)~=a,a,...
'ErrorHandler',@(varargin)false)));

PS:这个代码是我们书籍序言中的代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值