问题 设A[1...n]是一个包含n个不同数的数组。如果在i < j的情况下,有A[i]>A[j],则(i,j) 就称为A的一个逆序对(inversion)。 a)列出(2,3,8,6,1)的5个逆序。 b)如果数组的元素取自集合{1,2,…,n},那么,怎样的数组含有最多的逆序对?它包含 多少个逆序对? c)插入排序的运行时间与输入数组中的逆序对的数量之间有怎样的关系?说明你的理由。 d)给出一个算法,它能用 的最坏 情况运行时间,确定n个元素的任何排序中逆序对的数目。 分析 问题b 显然逆序排序的集合含有最多的逆序对。它包含 ,即 n(n-1)/2个逆序对。 问题c 插入排序中,数据的移动次数就是逆序对的数目。因为在插入排序的while循环中A[i]与 key=A[j]的数据相比,此时,i < j,如果根据while循环中的判断条件A[i] > key那么 (i,j)就是一个逆序对;又因为在循环的每次迭代过程中,前面已经排序好的j-1个数 据是原来的j-1个数据,所以不改变与后边数据的逆序对关系;