算法导论 4.1-4

问题

证明合并排序算法的“准确”递归式的解为Θ(nlgn)

分析

证明:因为
并且由4.1-2可知T'(n)=Ω(nlgn)
所以T(n)=Ω(nlgn)

因为
所以依照假设,可以得到T(n)<=c(n+2)lg(n+2)+(1-2c)n-2c
不能证明假设,我们改变假设,设T(n)=O(nlg(n-2)),可得
T(n)<=cnlg(n-2)+clg(n-2)-cn-2c+n<=cnlg(n-2)+(1-c)n+clg(n-2)<=cnlg(n+2)-[(c-1)n-2clgn]
因为多项式函数比指数函数增长的快,所以只要c>=1,必然存在n1,当n>=n1时,使 (c-1)n-2clgn >=0
即此种情况下T(n)=O(nlg(n-2))
又因为nlg(n-2) <= nlgn,所以nlg(n-2) = O(nlgn),根据传递性T(n)=O(nlgn)

所以T(n)=Θ(nlgn)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值