问题
证明合并排序算法的“准确”递归式的解为Θ(nlgn)分析
证明: | 因为 并且由4.1-2可知T'(n)=Ω(nlgn) 所以T(n)=Ω(nlgn) 因为 所以依照假设,可以得到T(n)<=c(n+2)lg(n+2)+(1-2c)n-2c 不能证明假设,我们改变假设,设T(n)=O(nlg(n-2)),可得 T(n)<=cnlg(n-2)+clg(n-2)-cn-2c+n<=cnlg(n-2)+(1-c)n+clg(n-2)<=cnlg(n+2)-[(c-1)n-2clgn] 因为多项式函数比指数函数增长的快,所以只要c>=1,必然存在n1,当n>=n1时,使 (c-1)n-2clgn >=0 即此种情况下T(n)=O(nlg(n-2)) 又因为nlg(n-2) <= nlgn,所以nlg(n-2) = O(nlgn),根据传递性T(n)=O(nlgn) 所以T(n)=Θ(nlgn) |