POJ 2516 最小费用流

题意

传送门 POJ 2516

题解

最直接的想法,将物品、商店/仓库组成二元组,跑最小费用流,TLE;观察图,只有标识了相同商品的点集才会有直接的连线,于是可以将不同商品的图拆开,缩减图的规模,分别求解最小费用流;对于同一类商品,因为任意商店与仓库相连,只要满足商店需求大于仓库库存,就一定能满足条件,反之输出 − 1 -1 1

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#define min(a,b)    (((a) < (b)) ? (a) : (b))
#define max(a,b)    (((a) > (b)) ? (a) : (b))
#define abs(x)    ((x) < 0 ? -(x) : (x))
#define INF 0x3f3f3f3f
#define delta 0.85
using namespace std;

#define MAX_V 105
struct edge{
	int to, cap, cost, rev;
	edge(int to, int cap, int cost, int rev):to(to), cap(cap), cost(cost), rev(rev){}
};

int V;
vector<edge> G[MAX_V];
int h[MAX_V], dist[MAX_V];
int prevv[MAX_V], preve[MAX_V];

void add_edge(int from, int to, int cap, int cost){
	G[from].push_back(edge(to, cap, cost, G[to].size()));
	G[to].push_back(edge(from, 0, -cost, G[from].size() - 1));
}

int min_cost_flow(int s, int t, int f){
	int res = 0;
	memset(h, 0, sizeof(h));
	
	while(f > 0){
		// Dijkstra
		priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > que;
		memset(dist, 0x3f, sizeof(dist));
		dist[s] = 0;
		que.push(pair<int, int>(0, s));
		while(!que.empty()){
			pair<int, int> p = que.top(); que.pop();
			int v = p.second;
			if(dist[v] < p.first) continue;
			for(int i = 0; i < G[v].size(); i++){
				edge &e = G[v][i];
				int d2 = dist[v] + e.cost + h[v] - h[e.to];
				if(e.cap > 0 && d2 < dist[e.to]){
					dist[e.to] = d2;
					prevv[e.to] = v;
					preve[e.to] = i;
					que.push(pair<int, int>(dist[e.to], e.to));
				}
			}
		}
		if(dist[t] == INF){
			return -1;
		}
		for(int v = 0; v < V; v++) h[v] += dist[v];
		int d = f;
		for(int v = t; v != s; v = prevv[v]){
			d = min(d, G[prevv[v]][preve[v]].cap);
		}
		f -= d;
		res += d * h[t];
		for(int v = t; v != s; v = prevv[v]){
			edge &e = G[prevv[v]][preve[v]];
			e.cap -= d;
			G[v][e.rev].cap += d;
		}
	}
	return res;
}

void clear_graph(){
	for(int v = 0; v < V; v++) G[v].clear();
}

#define MAX_N 50
int N, M, K, F;
int cost[MAX_N][MAX_N][MAX_N];
int od[MAX_N][MAX_N], sg[MAX_N][MAX_N];
int ods[MAX_N], sgs[MAX_N];

void solve(){
	int res = 0;
	for(int k = 0; k < K; k++){
		// 物品 k 存货小于需求
		if(ods[k] > sgs[k]){
			printf("-1\n");
			return;
		}
		// 初始化图
		int s = N + M, t = s + 1;
		V = t + 1, F = ods[k];
		clear_graph();
		// 建图
		for(int i = 0; i < N; i++) add_edge(s, i, od[i][k], 0);
		for(int i = 0; i < M; i++) add_edge(N + i, t, sg[i][k], 0);
		for(int i = 0; i < N; i++){
			for(int j = 0; j < M; j++){
				add_edge(i, N + j, INF, cost[k][i][j]);
			}
		}
		res += min_cost_flow(s, t, F);
	}
	
	printf("%d\n", res);
}

int main(){
	while(~scanf("%d%d%d", &N, &M, &K) && (N | M | K)){
		memset(ods, 0, sizeof(ods));
		memset(sgs, 0, sizeof(sgs));
		for(int i = 0; i < N; i++){
			for(int k = 0; k < K; k++){
				scanf("%d", &od[i][k]);
				ods[k] += od[i][k];
			}
		}
		for(int i = 0; i < M; i++){
			for(int k = 0; k < K; k++){
				scanf("%d", &sg[i][k]);
				sgs[k] += sg[i][k];
			}
		}
		for(int k = 0; k < K; k++){
			for(int i = 0; i < N; i++){
				for(int j = 0; j < M; j++){
					scanf("%d", &cost[k][i][j]);
				}
			}
		}
		solve();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值